Что мешает внедрению ноу-хау в «коммуналке»? Внедрение новых технологий Новшества в системе водоснабжения.

Начало ХХI века для Московского водопровода ознаменовалось внедрением самых прогрессивных технологий, применяемых в мировом водном секторе. На станциях водоподготовки классическую двухступенную технологию отстаивания и фильтрования стали дополнять методами озонирования в сочетании с сорбцией на активированных углях.

Опыт промышленной эксплуатации озоносорбции - озонирования с последующей сорбционной очисткой на фильтрах с гранулированным активированным углем - показал значительное повышение эффективности очистки воды по органическим загрязнениям, снижение концентрации хлорорганических веществ, остаточного алюминия и запахов в питьевой воде.

Развитием направления модернизации технологий в области очистки природных вод стал ввод в эксплуатацию в декабре 2006 года технологических сооружений, в состав которых впервые в истории российских централизованных систем водоснабжения была включена стадия мембранной ультрафильтрации. Использование новейших технологий в системе централизованного водоснабжения позволяет поддерживать качество питьевой воды, соответствующее нормам не только России, но наиболее развитых стран мира даже в условиях аварийных залповых загрязнений источников водоснабжения.

В мировой практике питьевого водоснабжения мембранные технологии в последние годы начинают занимать лидирующее положение благодаря универсальной способности повышать эффективность очистки по многим группам загрязнений, включая показатели эпидемической безопасности воды. Интерес к мембранным технологиям связан также с обеспечением максимальной компактности и автоматизации при минимуме вводимых в воду химических реагентов и гарантии высокой надежности функционирования сооружений.

Наряду с внедрением новых методов очистки воды постоянно совершенствуются процессы обеззараживания воды. С целью повышения надежности и безопасности производства питьевой воды за счет исключения из обращения опасного вещества – жидкого хлора в 2012 году на всех станциях водоподготовки завершен перевод системы обеззараживания воды на новый реагент – гипохлорит натрия. В связи с ужесточением государственного норматива на содержание в питьевой воде хлороформа проведена целенаправленная работа по оптимизации режимов дезинфекции, в результате чего в московской водопроводной воде концентрация хлороформа снизилась до величин 4 – 22 мкг/л при нормативе 60 мкг/л, что соответствует уровню развитых стран мира.

В условиях плотной городской застройки и заторов на дорогах экономически целесообразно применение бестраншейных методов ремонта и восстановления. На сегодняшний день в Москве применяются самые современные методы, в их числе: нанесение цементно-песчаного покрытия на внутреннюю поверхность трубопровода, протяжка сплошных полимерных рукавов, полиэтиленовых труб в существующий трубопровод, освоен метод ремонта трубопроводов большого диаметра "труба-в-трубе". Это позволяет вернуть в активную эксплуатацию потерявшие работоспособность коммуникации, увеличить их срок службы минимум на 50 лет, увеличить пропускную способность, а для водопроводных сетей, что особенно важно, сохранить высокое качество транспортируемой воды, снизить количество аварий, минимизировать непроизводительные потери воды.

На долю бытового, коммунального и промышленного потребления приходится менее одной пятой объема водопользования во всем мире, и всего лишь 5% в Африке, Центральной Америке и Азии. Большой дефицит имеется в развивающихся странах, где более 1 миллиарда человек лишены доступа к чистой воде, и гораздо большее число людей зависят от ненадежных источников снабжения. Неравенство также наблюдается и при распределении воды: бедное городское население получает ее из ненадежных и низкокачественных источников, чрезмерно переплачивая поставщикам. Спросу городского населения зачастую отдаются большие предпочтения по сравнению с потребностями сельских районов.

Между промышленно развитыми и развивающимися странами существуют различия как в характере проблем, так и в вариантах водоснабжения.

В промышленно развитых странах расход воды, как правило, выше, спрос умеренный, а основное внимание уделяется снижению потребления и более рациональному водопользованию в целях предотвращения необходимости подключения новых источников снабжения или же общего снижения их количества.

В развивающихся странах низкий уровень объема снабжения сопряжен с высоким спросом, основное внимание сосредотачивается на поиске новых источников воды. Повсеместно наблюдается низкая эффективность существующих систем водоснабжения и неудовлетворительная организация управления. Доступа к водоснабжению лишена большая часть бедного городского населения и неимущих слоев.

Истощение источников воды вызывает ухудшение качества последней как в развитых, так и в развивающихся странах.

Существует целый ряд возможностей для удовлетворения самых разнообразных потребностей в водоснабжении. В развивающихся странах приоритетами являются расширение области предоставления водоснабжения в городских и сельских районах, а также восстановление источников снабжения водой городских территорий.

Регулирование спроса

Регулирование спроса приобретает все более широкое распространение во многих промышленно развитых странах. Его потенциал по снижению потребления прямо пропорционален преобладающему уровню водопользования. Регулирование спроса обладает большими возможностями в Соединенных Штатах, где средний уровень потребления на человека составляет около 400 литров в день. В развивающихся странах этот показатель, как правило, ниже. Тем не менее эта ситуация существенно отличается в разных странах, и у наиболее интенсивных водопотребителей также есть потенциал для экономии. В Нью-Дели, к примеру, диапазон ежедневного потребления водопроводной воды на семью разнится от 700 литров на семью с низким уровнем дохода до 2200 литров для богатых. Тарифы преимущественно субсидируются за счет государства, и для экономии потребления воды остается мало стимулов.

Расход воды на стирку и санитарно-гигиенические цели составляет значительную долю от потребления воды в бытовом и промышленном секторе. Необходима выработка стандартов, нормативов и санкций для продвижения водосберегающих технологий, в том числе для производителей бытовых устройств и оборудования, а также выплата субсидий потребителям, которые решают перейти на водосберегающие устройства. В Дании за 10 лет потребление воды на душу населения упало на 24% за счет широкого распространения водосберегающих технологий, в том числе для туалетов, душевых и стиральных машин.

Во многих регионах мира, включая Соединенные Штаты, Южную Африку и Европу, блочные тарифы с низким уровнем оплаты за расход воды и прогрессивным ее ростом по мере повышения уровня потребления оказались успешной мерой для сдерживания или снижения спроса на воду. Для их эффективности крайне важно внедрять дешевые, но эффективные счетчики расхода воды.

Альтернативные источники водоснабжения

Уровень водопотерь от протечек, нелегальных подключений и проблем с замерами по-прежнему остается высоким. В азиатских городах на него приходится 35-40% от общего объема водоснабжения, а в отдельных городах этот показатель доходит до 60%. Стабилизация и снижение потерь в трубопроводных системах может помочь улучшить сферу водоснабжения. К примеру, данные по Великобритании свидетельствуют о снижении ежесуточного душевого потребления воды на 29 литров в результате введения властями обязательного профилактического осмотра, позволяющего обнаружить протечки. Реализация этой программы и другие меры по рациональному водопользованию привели к тому, что рассмотрение планов строительства новой плотины в Йоркшире было решено отложить.

Сбор дождевой воды с помощью емкостей на крышах, резервуаров и других методов является эффективным способом бытового водоснабжения.

Врезка 5.6: Сбор дождевой воды в городах приобретает все большее распространение

В Германии существуют специальные субсидии, которые стимулируют жителей сооружать емкости для сбора дождевой воды и использовать затем профильтрованную воду. Из-за экономии на ежемесячных расходах за водоснабжение и благодаря другим льготам вложенные в сбор дождевой воды средства окупаются за 12 лет. В Токио (Япония) водоснабжение 70% всех туалетов в «Риогоку Кокугкан» — здании для проведения схваток борцов сумо — обеспечивается запасами дождевой воды.

Еще одним существенным источником может быть рециркуляция сточных вод. К 1999 году в области залива Сан-Франциско в Калифорнии вторично использовалось большое количество сточных вод — достаточное, чтобы удовлетворить потребности 2 млн человек. К 2020 году планируется обеспечить таким образом потребности уже 6 млн человек. В сельском хозяйстве используется 32% такой воды, 27% идет на пополнение запасов подземных вод, 17% — на поддержку орошения земельных участков, 7% — на нужды промышленности. Оставшаяся часть расходуется на экологические и иные цели.

В качестве решения проблемы дефицита воды на местах часто предлагается вариант ее переброса между речными бассейнами. Последствия таких действий требуют тщательного изучения, особенно в тех случаях, когда не предусмотрен возвратный сток в бассейн, как это происходит при других методах водозабора.

Благоприятствующие факторы

Как и в случае с другими секторами, крайне важно применение политических, институциональных и организационных реформ для реализации регулирования спроса и поиска альтернативных решений в области водоснабжения. В число инициатив входит следующее:

  • в Великобритании, Соединенных Штатах и Австралии выдача лицензий на новый водозабор предусматривает обязательное изучение всех экономически оправданных предложений в области регулирования спроса;
  • эффективность управления является основой для рационального водопользования и улучшенного планирования, но единого для всех ситуаций метода руководства со стороны государства или частного сектора не существует. Для улучшения эффективности работы государственных органов необходимо усиление институциональных полномочий и ответственности за принятые решения;
  • в целях сохранения доступа к водоснабжению необходимо введение эффективных законодательных механизмов и приемлемой оплаты для бедных слоев населения городских и сельских районов.

Описание:

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса).

Современным зданиям – современные технологии водоснабжения!

Разработка новых технологий и аппаратов на основе метода нанофильтрации для систем водо- и теплоснабжения городских зданий

А. Г. Первов , проф., д-р техн. наук, кафедра водоснабжения МГСУ

А. П. Андрианов , канд. техн. наук, кафедра водоснабжения МГСУ

Д. В. Спицов

В. В. Кондратьев , инженер, кафедра водоснабжения МГСУ

Современные темпы развития строительных технологий не всегда идут в ногу с развитием технологий водоподготовки, используемых для санитарно-технического оснащения современных зданий. Применение явно устаревших технологий часто создает помехи строительству. Например, необходимость создания станций доочистки воды в зданиях заставляет решать вопросы размещения, монтажа и эксплуатации (сервисного обслуживания). Поэтому от выбранной технологии зависят не только качество воды, но и габариты сооружений, затраты на монтаж и эксплуатацию, учитывающие объемы сточных вод и воды на собственные нужды.

Традиционные технологии, использующие напорные фильтры с загрузками из песка, угля и ионообменных смол достаточно «громоздки», требуют затрат при их эксплуатации (замене загрузок или их регенерации), образуют стоки при их промывке и регенерации.

Совершенствование систем нанофильтрации позволяет создать оборудование с минимальными весом и габаритами, простотой монтажа и «наращивания» мощности, минимальными затратами на обслуживание, отсутствием реагентов и расходных материалов.

Современная экологическая ситуация способствует более широкому использованию мембранных систем. Это объясняется в первую очередь ужесточающимися требованиями к качеству питьевой воды - содержанием хлорорганических соединений, болезнетворных бактерий, фторидов, нитратов, ионов стронция и т. д. Современные мембраны демонстрируют бесспорную эффективность и универсальность в очистке воды от различных видов загрязнений. Второй главной чертой современных мембранных технологий является их «экологическая» чистота - отсутствие потребляемых реагентов и, соответственно, опасных для окружающей среды сбросов и осадков, создающих проблему их утилизации. Введение платы за пользование водопроводной водой и за сбросы в канализацию заставляет использовать водоочистные системы, потребляющие минимальное количество воды и не имеющие сбросов. Современные разработки систем водоподготовки с применением мембранных технологий позволяют снабжать инженерные системы качественной водой, тем самым обеспечив надежность и качество их работы.

Мембранные процессы ультрафильтрации и нанофильтрации давно привлекают внимание специалистов по водоснабжению благодаря своей «универсальности» - возможности одновременного удаления ряда загрязнений различной природы: биологических (бактерий и вирусов), органических (гуминовых кислот и др.), коллоидных, взвешенных, а также растворимых в ионном виде. Различия в мембранных процессах состоят в уровне очистки воды (проскоку в очищенную воду тех или иных загрязнений), зависящем от размера пор мембран.

Технология нанофильтрации известна достаточно давно и уже начинает применяться в питьевом водоснабжении благодаря эффективному снижению содержания органических соединений (цветности, летучих хлорорганических соединений) и железа, а также жесткости .

Метод нанофильтрации уже широко применяется для очистки поверхностных и подземных вод, в том числе и на крупных городских сооружениях (например, на станциях в Париже - 10000 м 3 /ч и Нидерландах - 6000 м 3 /ч).

Однако до сих пор метод нанофильтрации рассматривается как разновидность метода обратного осмоса со всеми его недостатками: необходимостью тщательной предочистки для предотвращения образования отложений карбоната кальция и осадков органических и коллоидных веществ; высокими эксплуатационными расходами, связанными с дозированием реагентов предочистки, использованием моющих растворов и высокой стоимостью замены мембранных модулей; традиционными мембранными модулями типа «рулон», не отличающимися высокой надежностью. Высокие расходы реагентов и другие эксплуатационные затраты заставляют специалистов пока скептически относиться к использованию нанофильтрации для подготовки воды высокого качества на крупных водоочистных станциях несмотря на бесспорную эффективность в сравнении с «классическими» коагуляционными и окислительно-сорбционными технологиями.

В настоящее время широкие масштабы промышленного внедрения имеет метод ультрафильтрации, который применяется в основном на очистных сооружениях городских водопроводов: с декабря 2006 года - в Москве на Юго-Западной станции (а также на водоочистных станциях Парижа, Лондона, Амстердама, Сингапура, в ряде городов США, Канады).

Однако применение ультрафильтрационных мембран (с размером пор 0,01-0,1 мкм) имеет весьма ограниченную область применения (снижение коллоидных частиц и бактерий) и не универсально при очистке вод различного состава. Поэтому в схемах очистки воды ультрафильтрация используется в сочетании с другими технологиями (коагуляционной и окислительно-сорбционной). Главными достоинствами ультрафильтрации является очень высокая удельная производительность (более 100 л/м 2 ч по сравнению с 35-40 л/м 2 ч у нанофильтрации) и возможность проведения промывки мембран обратным током для удаления с мембран загрязнений.

Разработка новой технологии очистки воды с применением нанофильтрации

Таким образом, целью работы стало изучение возможности преодоления основных недостатков метода нанофильтрации и создание технологии, сочетающей эффективность нанофильтрации и простоту ультрафильтрации.

Предпосылки для создания такой технологии созрели уже давно . Известны способы очистки поверхностных вод с помощью нанофильтрации крупных европейских фирм Norit (Нидерланды) и PCI (Великобритания), использующие специальные трубчатые конструкции, позволяющие снизить осадкообразование и проводить гидравлические промывки со сбросом давления для «срыва» загрязнений с поверхности мембран . Однако аппараты трубчатых конструкций имеют очень малую удельную поверхность мембран и существенно увеличивают объемы установок и их энергопотребление, что в конечном счете выражается в высоких значениях удельных капитальных и эксплуатационных затрат.

Современные мембранные аппараты рулонной конструкции обладают большим преимуществом перед аппаратами с мембранами трубчатой формы в виде полого волокна, используемых в современных ультрафильтрационных установках - это плотность «упаковки мембран» или высокая удельная поверхность мембран на единицу объема аппарата. При одинаковых размерах «стандартных» мембранных модулей (диаметр 200 мм, длина 1000 мм) суммарная поверхность мембран в ультрафильтрационном модуле составляет 18-20 м 2 , а в нанофильтрационном 35-40 м 2 . Более того, стоимость производства рулонного модуля с плоскими мембранами значительно (на 50-60 %) дешевле, чем половолоконного. Поэтому основным направлением работы стало усовершенствование рулонной конструкции с целью повышения надежности работы и «устойчивости» к загрязнениям. Несовершенство конструкции рулонного элемента связано с наличием в нем сетки-сепаратора (рис. 1), являющейся «ловушкой» для загрязнений. Поэтому создание аппаратов с «открытым» каналом без мешающей сетки позволяет избежать накопления загрязнений во время работы и обеспечить возможность проведения гидравлических промывок со сбросом давления . Подбор оптимальных по своим свойствам нанофильтрационных мембран и разработка технологии производства мембранных модулей различных типоразмеров позволили создать безреагентные технологии для ряда случаев очистки воды. Отсутствие реагентов в схеме обеспечивается, с одной стороны, высокой эффективностью мембран в отношении задержания растворенных примесей, с другой - постоянным отводом загрязнений с поверхности мембран благодаря автоматизированным гидравлическим промывкам и поддержанием фильтрующей поверхности мембран «в чистоте».

Благодаря разработанным конструкциям аппаратов и автоматизированным промывкам созданы технологии, позволяющие очищать воду с высоким содержанием взвешенных веществ, железа, жесткости, цветности. В зависимости от состава очищаемой воды (главным образом содержания органических веществ различной природы) выбирается марка мембран с наиболее подходящими селективными свойствами. Для очистки поверхностных и подземных вод были опробованы различные типы мембран, но наибольшую эффективность продемонстрировали новые разработки мембран из ацетата целлюлозы со специальными стабилизирующими добавками. Из-за гидрофильной поверхности мембраны чрезвычайно эффективно задерживают ионы железа, растворенные органические вещества. Кроме того, благодаря поверхностным свойствам ряд коллоидных и органических соединений хуже осаждается на ацетатных мембранах, чем на композитных. Описанные выше положения были доказаны путем всесторонних исследований, описанных в прилагаемых публикациях. Аналогов разработанным аппаратам и мембранам пока нет как у отечественных, так и у зарубежных фирм. Технология получения мембран и производства рулонных элементов с «открытым» каналом также представляет ноу-хау и подробно не раскрывается. Попытки усовершенствовать каналы рулонных элементов проводились рядом авторов давно, однако результаты не были доведены до широкого промышленного внедрения вследствие сложности технологии. В настоящей работе используется технология изготовления, ранее изложенная и запатентованная, но благодаря совместным действиям авторов усовершенствованная и находящаяся в стадии патентования.

Разработанные нанофильтрационные аппараты оказываются конкурентоспособными по стоимости, производительности и режиму промывки с ультрафильтрационными аппаратами, будучи гораздо эффективнее по частным свойствам. На рис. 2 показаны зависимости производительности аппаратов «стандартного» размера от времени при очистке поверхностной воды из реки.

Вследствие потери производительности при образовании на мембранах осадков и необратимого забивания пор взвешенными частицами средняя производительность ультрафильтрационных мембран оказывается на 40-50 % меньше «паспортного», отличаясь на 30-40 % от производительности аппарата с нанофильтрационными мембранами.

Технология доочистки воды из водопровода в городских зданиях

Вода в централизованных водопроводах часто содержит взвешенные коллоидные вещества (например, гидроокись железа), а также бактерии вследствие вторичного загрязнения воды в водоводах. В ряде случаев наблюдается повышенное содержание хлор-органических веществ (во время паводков). Традиционно для удаления взвешенных веществ используются механические напорные фильтры, а для снижения содержания органических веществ и запахов - фильтры с сорбционной загрузкой.

Главными недостатками такого подхода являются: использование достаточно громоздких фильтров (обычно импортных из стеклопластика диметром 0,75-1,2 м и высотой более 2 м); трудности при монтаже фильтров в существующих помещениях; сложности обслуживания и замены загрузок; достаточно быстрое истощение сорбционной емкости угля и необходимость его замены.

В последнее время вместо механических фильтров используются установки ультрафильтрации, позволяющие обеспечить более глубокое удаление из воды коллоидов железа, бактерий и вирусов. Кроме того, мембранные установки компактны, имеют значительно меньший вес и объем по сравнению с механическими фильтрами, что особенно важно при их использовании и размещении в городских зданиях. Однако использование сорбционных фильтров в городских зданиях требует, вследствие ограниченной сорбционной емкости загрузок, достаточно высоких затрат на сервисное обслуживание таких установок.

Применение нанофильтрационных установок позволяет решить проблему удаления органических загрязнений из водопроводной воды без применения сорбционных фильтров и при минимальных эксплуатационных затратах.

Расчеты и исследования показывают, что удаление методом нанофильтрации большинства (свыше 90 %) органических загрязнений позволяет продлить ресурс сорбционных фильтров в 10-20 раз или соответственно уменьшить их объем, ограничившись использованием картриджных фильтров только на случай присутствия в воде запахов в период паводков или аварийных ситуаций на водоисточнике. Кроме того, нанофильтрационные мембраны частично убирают из воды жесткость и щелочность, делая воду пригодной для использования в системах теплоснабжения и горячего водоснабжения, избавляя заказчика от необходимости использования умягчителей и дополнительных расходных материалов (таблетированной соли).

Современные заказчики на городских объектах часто сами формируют дополнительные требования к качеству воды, значительно более жесткие, чем требования существующих международных стандартов ВОЗ и СанПиН, что вызвано наличием в зданиях «особых» потребителей - поликлиник, медицинских оздоровительных центров, предприятий общепита и др.

Так, например, при проектировании систем СТОЗ небоскреба «Федерация» проектировщики «столкнулись» с требованиями по содержанию железа -0,05 мг/л, ГСС (галогенсодержащих соединений) -10 мкг/л (против нормативов ВОЗ: 0,3 мг/л и 200 мкг/л соответственно). Похожие требования оказались решающими при выборе систем нанофильтрации для водоснабжения зданий Центральной тыловой таможни и поликлиники ФСБв Москве в 2002 году (рис. 3, 4).

В настоящей работе проведены исследования по сравнению эффективности снижения в водопроводной воде окисляемости и содержания растворенных органических веществ с использованием систем ультрафильтрации с сорбционной доочисткой и систем нанофильтрации. Качество очищенной воды оценивалось по показателям окисляемости .

Качество воды обобщенно оценивается по характеру кривых светопоглощения, где молекулярному весу и природе органических веществ соответствуют определенные длины волны.

На рис. 5 показаны кривые светопоглощения водопроводной воды, пропущенной через нанофильтрационные мембраны 4 и фильтр с загрузкой из угля 2 и 3. Применение нанофильтрационных мембран 4 позволяет получить воду с низкими показателями окисляемости. При дополнительном использовании сорбционных фильтров после нанофильтрации только для удаления запаха ресурс их увеличивается во много раз. Результаты ресурсных испытаний сорбционного фильтра (определение его сорбционной способности) показаны на рис. 6.

Экономический эффект от применения технологии нанофильтрации определяется сокращением затрат на обслуживание установок доочистки.

Технология очистки воды для целей теплоснабжения и вентиляции

Современное состояние городского строительства требует решения проблем снабжения зданий не только качественной питьевой водой, удовлетворяющей требованиям СанПиН, но в ряде случаев водой для специальных технологических нужд:

подпитка контуров теплосети и отопления;

подпитка контуров оросителей и испарителей систем кондиционирования воздуха;

Подпитка паровых котлов «крышных котельных» для систем теплоснабжения.

В зависимости от требований к качеству подготовленной воды в системах нанофильтрации используются различные типы мембран с различными показателями селективности (солезадерживающей способностью). При использовании мембранных установок для нужд подпитки теплосети и горячего водоснабжения, карбонатный индекс KI очищенной воды должен удовлетворять следующим условиям:

КI=[Са +2 ]· ≤ 2-5,

где , значения концентраций кальция и щелочности, выраженные в мг-экв/л.

Для обеспечения таких требований идеально подходят нанофильтрационные мембраны в сочетании с разработанными мембранными элементами с «открытым каналом», исключающим образование застойных зон в аппаратах и образование в них осадка карбоната кальция, резко снижающего время работы аппарата .

При необходимости получения питательной воды для паровых котлов и контуров систем кондиционирования воздуха требуется вода со значениями жесткости на уровне 0,01-0,02 мг-экв/л. Традиционно для получения глубоко умягченной воды используются двухступенчатые системы Na-катионирования или (в настоящее время) вместо I ступени Na-катионирования - установки обратного осмоса . И в том, и в другом случае схемы глубокого умягчения требуют высоких эксплуатационных затрат (на таблетированную соль, ингибитор, моющие растворы, частое сервисное обслуживание) и решения проблем утилизации регенерационных растворов. При использовании представленных в работе разработок созданы схемы двухступенчатого умягчения (с использованием на I ступени мембранных нанофильтрационных аппаратов) и аппаратов обратного осмоса на II ступени (рис. 7).

Такие схемы позволяют избежать применения реагентов при их эксплуатации и обеспечить длительный (свыше 2500 часов) период безостановочной работы. В ряде случаев целесообразно использовать специально разработанные патроны с порошкообразным ингибитором для повышения надежности систем обратного осмоса.

Для определения эксплуатационных характеристик мембранных схем с использованием аппаратов обратного осмоса и нанофильтрации (определение типов моющих растворов, времени непрерывной работы и др.) разработана специальная компьютерная программа.

Пример сравнения эксплуатационных затрат различных схем глубокого умягчения показан на рис. 8.

Благодаря использованию новых типов мембран и мембранных аппаратов время работы максимально увеличено, что ведет к снижению затрат по обслуживанию установки (рис. 9).

Общий вид двухступенчатых мембранных систем показан на рис. 10.

Описанные технологии применяются при разработке:

Систем очистки воды для централизованного водоснабжения: станции очистки поверхностной воды и станции очистки подземной воды производительностью до 10000 м 3 /ч; системы полностью безреагентные;

Систем очистки воды для микрорайонов и комплексов промышленных и торговых зданий;

Систем улучшения качества водопроводной воды для отдельных жилых и офисных зданий;

Систем подготовки воды подпитки теплосетей и бойлеров жилых и промышленных зданий;

Систем улучшения качества питательной воды из технических водопроводов городских предприятий;

Систем подготовки питательной воды паровых котлов среднего и высокого давления («крышных котельных» и мини-ТЭЦ) для теплоснабжения зданий или городских жилых комплексов (ЦТП) (в комбинации разработанных систем нанофильтрации с системами обратного осмоса). Разработанные технологии позволяют решать поставленные проблемы с применением компактного, легко монтируемого оборудования с простым «наращиванием» мощности, обеспечивающего автоматизированный круглосуточный режим работы, не нуждающегося в реагентах и расходных материалах и требующих сервисных мероприятий не чаще чем через 6 месяцев непрерывной работы.

Для водоснабжения крупного (жилого или гостиничного здания) система водоподготовки может состоять из четырех мембранных блоков общей производительностью 50 м 3 /ч. Габариты каждого блока (производительностью 12 м 3 /ч) составляют 1,5 м (глубина) х 1,5 м (высота) х 0,5 м (ширина). Общие габариты станции производительностью 50 м 3 /ч составляют (ШхДхВ) 3,5х1 ,5х1,5 м. В комплект поставки каждого блока входят: повысительный насос, мембранные аппараты, картриджи доочистки с углем. Эксплуатация системы состоит в проведении профилактических промывок (1 -2 раза в год) и замене угольных картриджей (1 раз в год). Срок службы мембран составляет 5 лет. Компоновка одного блока показана на рис. 11, общий вид одного блока производительностью 12 м 3 /ч показан на рис. 12.

Литература

  1. Первов А. Г. Андрианов А. П. Современные мембранные системы нанофильтрации для подготовки питьевой воды высокого качества // Сантехника. 2007. № 2.
  2. Futselaar M. et all. Direct capillary nanofiltration for surface water. // Desalination. V. 157(2003), p. 135-136.
  3. Futselaar H., Schonewille H., MeerW. Direct capillary nanofiltration for surface water. (Presented at the European Conference on Desalination and the Environment: Fresh Water for All, Malta, 4-8 May 2003. EDS, IDA) // Desalination. 2003. Vol.157, p. 135-136.
  4. Bruggen B., Hawrijk I., Cornelissen E., Vandecasteele С Direct nanofiltration of surface water using capillary membranes: comparison with flat sheet membranes. // Separation and Purification Technology. 2003.
  5. Bonn_ P.A.C., Hiemstra P., Hoek J.P., Hofman J.A.M.H. Is direct nanofiltration with air flush an alternative for household water production for Amsterdam? // Desalination. 2002. V. 152, p. 263-269.
  6. Web-сайт Trisep http://www.trisep.com.
  7. Web-сайт PIC Membranes http://www.pcimem.com.
  8. Pervov Alexei G., Melnikov Andrey G. The determination of the required foulant removal degree in RO feed pretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  9. Pervov A.G. A simplified RO process design based on understanding of fouling mechanisms.// Desalination 1999, Vol. 126.
  10. Riddle Richard A. Open channel ultrafiltration for reverse osmosispretreatment. // IDA world conference on Desalination and Water reuse August 25-29, 1991, Washington. Pretreatment and fouling.
  11. Первов А.Г. Мембранный рулонный элемент. Патент №2108142, выд. 10.04.1998.
  12. Irvine Ed, Welch David, Smith Alan, Rachwal Tony. Nanofiltration for colour removal - 8 years operational experience in Scotland. // Proc. Of the Conf. on Membranes in Drinking and Industrial Water Production. Paris, France, 3-6 October 2000. V 1, p. 247-255.
  13. Pervov A.G. Scale formation prognosis and cleaning procedure schedules in reverse osmosis operation. // Desalination 1991, Vol. 83.
  14. Hilal Nidal, Al-Khatib Laila, Atkin Brian P., Kochkodan Victor, Potapchenko Nelya. Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM // Desalination 2003, Vol. 156, p. 65-72.
  15. Hilal Nidal, Mohammad A. Wahab, Atkina Brian, Darwish Naif A.Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: A review // Desalination 2003, Vol. 157, p. 137-144.
  16. Первов А. Г., Мотовилова Н. Б., Андрианов А. П., Ефремов Р. В. Разработка систем очистки цветных вод северных районов на основе технологий нанофильтрации и ультрафильтрации // Очистка и кондиционирование природных вод: Сб. науч. трудов. Вып. 5. М., 2004.
  17. Первов А. Г., Андрианов А. П., Спицов Д. В., Козлова Ю. В. Выбор оптимальной схемы доочистки водопроводной воды в городских зданиях с использованием мембранных установок // Сборник докладов седьмого международного конгресса «Вода: экология и технология». Том 1.
  18. Первов А. Г., Бондаренко В. И., Жабин Г. Г. Применение комбинированных систем обратного осмоса и ионного обмена для подготовки питательной воды паровых котлов // Энергосбережение и водоподготовка. 2004. № 5.

Цель настоящей статьи - проинформировать специалистов о достаточно новом для российского рынка продукте – трубопроводах «АДЕЛАНТ» из ХПВХ (PVC-C), который гарантирует соответствие всем вышеизложенным требованиям и даже дополняет этот список рядом дополнительных достоинств.

ХПВХ (хлорированный поливинилхлорид) - это современный высококачественный материал для систем горячего и холодного водоснабжения, отопления (FlowGuard Gold™Type II) и промышленного применения (Corzan®). Начало применению ХПВХ (PVC-C) - систем было положено в США аэрокосмическими технологиями, в строительстве же они используются уже почти 50 лет и зарекомендовали себя с наилучшей стороны. На российском рынке трубопроводы из хлорированного поливинилхлорида (PVC-C) Тип I представлены западными компаниями с 1993 года, но для российского рынка был разработан специальный Тип II и в 2008 на заводе «АДЕЛАНТ» запущено первое в России производство труб из хлорированного поливинилхлорида (FlowGuard Gold™Type II).

Трубопроводы из ХПВХ могут использоваться в системах:

  • хозяйственно-питьевого водоснабжения;
  • горячего водоснабжения;
  • отопления;
  • технологических трубопроводов для пищевых и непищевых жидкостей.

Особенностью трубопроводов из PVC-C является их долговечность, коррозионная и химическая стойкость в коммунальных и промышленных средах.

ПРЕИМУЩЕСТВА трубопроводов из ХПВХ (PVC-C) Тип II

1. Снижение затрат на монтажные работы и дальнейшее техническое обслуживание инженерных систем:

Особое внимание следует обратить на простой, недорогой и точный монтаж трубопроводов из ХПВХ, который осуществляется методом клеевого соединения. Клеевая технология монтажа – позволяет минимизировать затраты на возведение (монтаж) и дальнейшую эксплуатацию инженерных систем. Не требуется использование дорогостоящего оборудования и профессиональных навыков монтажника. Клей здесь работает, как «временный» растворитель материала, образуя монолитное соединение, что обеспечивает высочайшую герметичность, самую надежную из существующих.


Также нужно отметить

  1. небольшую массу (легче металлических в 3–8 раз), что снижает транспортные и складские расходы;
  2. использование при монтаже в основном простых ручных инструментов, не требующих подвода энергии (электричества, сжатого воздуха и т. д.);
  3. минимизация трудозатрат на подготовительные работы и сам монтаж;
  4. незначительные затраты на подготовку специалистов;
  5. низкая стоимость самой услуги - монтажных работ;
  6. сокращение сроков монтажа.

Для сравнения: для того, чтобы смонтировать 100-метровый участок трубопровода из стальной трубы и подготовить его к опрессовке, требуется несколько дней. С трубами из ХПВХ эту задачу можно решить максимум за 2 часа.

2. Экологичность материала. Самая ВЫСОКАЯ сопротивляемость росту бактерий

Трубы из ХПВХ не оказывают никакого влияния на вкусовые качества и запах воды. По проведенным исследованиям оказалось, что в трубах из ХПВХ наблюдается самый низкий рост бактерий по сравнению с другими материалами. Для сравнения, рост бактерий по сравнению с трубами из ХПВХ в двадцать раз меньше, чем в трубопроводах из нержавеющей стали, в шесть раз меньше, чем в трубопроводах из меди и в 45 раз меньше, чем в трубопроводах из полиэтилена (согласно исследованиям Университета Гигиены в Бонне). В трубопроводах ХПВХ НЕТ минеральных отложений, биологических обрастаний и коррозии внутренней поверхности трубопроводов.

3. Низкий коэффициент теплопроводности трубопроводов из ХПВХ

0,137 Вт/м°К гарантирует:
- уменьшение потерь тепла в трубопроводах горячего водоснабжения и отопления;
- безопасную температуру на поверхности трубы;
Отпадает необходимость в установке теплоизоляционных рубашек и это значительно удешевляет систему.

4. Высокая прочность материала

ХПВХ– это прочный жесткий материал, при использовании которого не происходит «провисания» трубы при работе с горячей водой. Такое свойство важно при прокладке стояков, ведь большинство пластиковых трубопроводов гибкие и требуют большого количества креплений. Высокая прочность трубы из хлорированного поливинилхлорида позволяет ей воспринимать большее рабочее давление при меньшей толщине стенки, благодаря этому при одинаковых наружных диаметрах пропускная способность трубы значительно возрастает по сравнению с другими пластиковыми трубами.

5. Коэффициент линейного расширения - 0,066 мм/м°С

Одно из главных преимуществ ХПВХ – самый низкий среди пластиков коэффициент линейного расширения. При переходе на использование пластиковых трубопроводов важное значение имеет коэффициент линейного расширения. Если при проектировании и монтаже внутренних инженерных систем из металлов этим коэффициентом можно пренебречь, то в случае с пластиками необходимо учитывать значительные температурные изменения длины и принимать соответствующие меры по их компенсации. Это в свою очередь означает дополнительный расход материалов и средств. Экономически выгодным решением в этом случае может быть применение трубопроводных систем из ХПВХ. Благодаря уникальным свойствам ХПВХ становится возможна прокладка труб в бетоне и под штукатуркой.

6. Высокие огнестойкие характеристики

В отличие от других полимеров ХПВХ имеет группу горючести Г1. Хлорированный поливинилхлорид как материал обладает «врожденными» противопожарными свойствами, его относят к «самозатухающим», он не плавится и не образует горящих капель, обладает самой высокой среди термопластов температурой воспламенения = 482°С. Противопожарные характеристики ХПВХ также включают низкую токсичность и малое выделение дыма (Д1 и Т2 согласно российским нормам). Пожаробезопасность при монтаже позволяет вести работы без остановки производственных процессов и в зданиях из сгораемых конструкций.

В заключении приводится таблица сравнения характеристик материалов пластиковых труб

Продукция, производимая в России на заводе «АДЕЛАНТ» полностью сертифицирована и удовлетворяет самым жестким нормам современного строительства. Срок службы системы при соблюдении условий эксплуатации составляет более 50 лет.

В МТИ разработали робота для поиска утечек в трубах

Cовременные системы водоснабжения теряют в среднем 20% воды из-за утечек. Они не только ухудшают качество водоснабжения, но также могут нанести серьезный ущерб зданиям и дорогам, размывая фундаменты. Системы обнаружения утечек стоят дорого и медленно работают: они плохо справляются там, где установлены трубы из дерева, глины или пластика, из которых состоит большинство систем водоснабжения в мире.

Исследователи (МТИ) пытаются решить эту проблему. По словам ученых, новая система способна быстро и дешево искать даже крошечные утечки, независимо от материала, из которого изготовлены трубы. Разработка и тестирование такой системы заняли девять лет — все это время над ней трудился профессор машиностроения Камаль Юсеф-Туми (Kamal Youcef Toumi) и его команда PipeGuard. Ученые готовы представить результаты своего труда на предстоящей Международной конференции IEEE/RSJ по интеллектуальным роботам и системам (IROS) в сентябре.

Летом 2017 года команда проводит испытания на 12-дюймовых бетонных водораспределительных трубах в городе Монтеррей, Мексика. В этом городе администрация разрешила провести испытания не случайно - каждый год Монтеррей теряет около 40% воды из-за утечек, а ущерб в виде упущенной выгоды оценивают в примерно 80 миллионов долларов. Вместе с этим утечки приводят к общему загрязнению воды, поскольку утекшая вода иногда возвращается в распределительные трубы.

В системе используется небольшой резиновый робот, который внешне похож на волан для бадминтона. Устройство можно внедрить в систему подачи воды через любой пожарный гидрант. Там оно пассивно плывет по течению, регистрируя свое местоположение по мере продвижения. Параллельно робот обнаруживает даже небольшие изменения давления, измеряя его величину с помощью резиновой «юбки», которая заполняет собой диаметр трубы.

Затем устройство извлекается сетью из другого гидранта, данные анализируют. При этом не нужно ничего копать или даже прерывать водоснабжение. Помимо пассивного робота, который движется по трубе, влекомый силой воды, команда ученых разработала активную версию, которая может контролировать собственное движение.

PipeGuard намерена коммерциализировать свою роботизированную систему обнаружения утечек, чтобы сократить общие потери. Например, в Саудовской Аравии, где большая часть питьевой воды обеспечивается за счет дорогих опреснительных установок, около 33% теряется из-за утечки. И первые полевые испытания в начале 2017 года прошли именно там.

Компания Pipetech LLС, обслуживающая трубопроводы в Аль-Хобаре, предоставила для эксперимента ржавый отрезок трубы длиной около 1,6 км и диаметром 2 дюйма. Эта трубопроводная система часто используется для проверки и сертификации новых технологий. Испытания роботов в трубах с изгибами и Т-образными соединениями предполагали создание искусственной утечки для демонстрации возможностей системы.

В ходе этого эксперимента робот успешно обнаружил утечки и отличил их от ложных сигналов, вызванных изменениями давления или размера трубы, шероховатостями или ориентацией трубы в пространстве. Тесты проводили 14 раз в течение трех дней, и каждый раз, по словам члена команды PipeGuard, аспиранта Ю Ву (You Wu), проходили успешно. Более того, робот обнаружил крошечную утечку, которая составляла около 3,5 литров (галлона) в минуту, что на одну десятую меньше минимального размера, который стандартные методы обнаружения в среднем могут определить.

После полевых испытаний в Монтеррее команда планирует создать более гибкую складную версию своего робота, которая может быстро адаптироваться к трубам разного диаметра. Например, трубопроводная система Бостона представляет собой «микс» из 6-, 8- и 12-дюймовых труб. Многие из них устанавливались так давно, что в городе нет точных данных об их точном местоположении. Новая версия робота сможет раскрываться, как зонтик, и работать в трубах разного диаметра.

По словам исследователей, значение робота не только в том, чтобы сократить потери воды, но и в обеспечении более безопасного и надежного водоснабжения. Способность роботизированной системы обнаруживать мельчайшие утечки позволит проводит своевременные ремонтные работы задолго до действительно серьезной аварии. Более того, роботов можно использовать как в водопроводных трубах, так и в других системах распределения, например, природного газа.

Такие трубы тоже зачастую стары и не отмечены на картах. В них может накапливаться газ, что приводит к серьезным взрывам. Однако утечки в газопроводе обычно трудно обнаружить до тех пор, пока они не станут достаточно большими, чтобы человек мог чувствовать запах добавленных одорантов. Фактически система МТИ изначально была разработана для обнаружения этих утечек, а впоследствии адаптирована для водопровода.

PipeGuard надеется, что в конечном счете робот будет не просто искать утечки, но и получит специальный механизм, с помощью которого можно ремонтировать небольшие утечки на месте.