Надежность технических систем методы обеспечения надежности. Основные понятия теории надежности

ЛЕКЦИЯ 1

Цель лекции: Ознакомление с основными понятиями теории надежности. Введение в теорию надежности. Основные термины и определения теории надежности.

1.1 Введение. Основные понятия и определения теории надежности.

Теория надежности научная дисциплина, в которой изучаются методы обеспечения эффективности работы объектов (устройств, систем)в процессе эксплуатации.

Теория надежности (ТН) появилась в середине 40-х годов 20-века и использовалась для необходимых расчетов надежности систем управления и различных видов связи.

Постепенно она нашла применение во многих областях человеческой деятельности (машиностроение, транспорт, строительство, энергетика, системы управления).

Технические средства и условия их работы становятся все более сложными. Количество элементов в отдельных видах устройств исчисляется сотнями тысяч. Если не принимать специальных мер по обеспечению надежности, то любое современное сложное устройство практически будет неработоспособным.

Наука о надежности развивается в тесном взаимодействии с другими науками. Прежде всего, она тесно связана с проектированием информационных систем и вопросами обеспечения их безопасности.

Среди математических дисциплин, прежде всего наибольшее применение получили: теория вероятности; некоторые элементы дискретной математики; дифференциальные уравнения и интегральные исчисления.

В настоящее время теория надежности является самостоятельной научной дисциплиной.

Основные ее задачи: установление видов количественных показателей надежности; выработка методов аналитической оценки надежности; разработка методов оценки надежности по результатам испытаний; оптимизация надежности на стадиях разработки и эксплуатации технических систем.

1.2 Основные термины и определения.

Надежность - свойство объекта (системы) сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях эксплуатации.

Техническая система – совокупность элементов, взаимодействующих между собой в процессе выполнения заданных функций.

Элемент системы –составная часть любой системы, которая рассматривается без дальнейшего разделения как единое целое; внутренняя структура элемента не является предметом исследования.

Понятия «система» и «элемент системы» выражены одно через другое и часто условны: то, что является системой для решения одних задач, для других принимается элементом в зависимости от целей изучения, требуемой точности, уровня знаний о надежности и т.д.

С точки зрения надежности все технические системы делятся на два вида:

1) Невосстанавливаемые элементы и системы, т.е. неремонтируемые в процессе эксплуатации (радиоэлементы, интегральные схемы, часть приборов, аппаратура летательных аппаратов и т.д.)

2) Восстанавливаемые элементы и системы, которые могут быть отремонтированы непосредственно после отказа в заданное время.

Само понятие «восстановление» следует понимать не только как корректировку, настройку, пайку или иные ремонтные работы по отношению к тем или иным техническим средствам, но и замену этих средств.

Подавляющее большинство систем, применяющихся для автоматизации технологических процессов, как правило, подлежит восстановлению после отказа, после чего они вновь продолжают работу.

Работоспособность - такое состояние изделия, при котором оно соответствует всем требованиям, предъявляемым к его основным параметрам. К числу основных параметров технических систем относятся: быстродействие; нагрузочная характеристика; устойчивость и точность выполнения операций.

Комплекс других показателей технической системы: масса, габариты, удобство в обслуживании и др. могут изменяться с течением времени. Эти изменения имеют допустимые значения, их превышение может привести к возникновению отказного состояния (частичного или полного).

Состояния технической системы могут быть также разделены на: исправное при котором система полностью соответствует всем требованиям нормативно-технической документации и конструкторской документации;

неисправное когда система имеет хотя бы одно несоответствие этим требованиям.

Событие, заключающееся в нарушении работоспособности системы, т.е. в переходе ее из работоспособного состояния в неработоспособное состояние, называется отказом.

Событие, заключающееся в переходе системы из исправного в неисправное (но работоспособное) состояние, называется повреждением.

Предельное состояние – возникает при условии, когда дальнейшее применение технической системы или оборудования невозможно или нецелесообразно.

После попадания в предельное состояние может следовать ремонт (капитальный или средний), в результате чего восстанавливается исправное состояние, или же система окончательно прекращает использоваться по назначению (физическое и моральное старение, износ).

Рисунок 1 – Схема основных состояний и событий восстанавливаемой системы

ЛЕКЦИЯ 2

Цель лекции: Ознакомление с основными этапами расчета и показателями надежности невосстанавливаемых систем.

Нормальное распределение

В отличие от экспоненциального распределения нормальное используется для описания таких систем и особенно их элементов, которые подвержены действию износа. При этом обязательно учитывается функция и плотность распределения наработки до отказа T , t - средняя наработка до отказа.

Параметрами нормального распределения являются: m – математическое ожидание случайной величины, T – наработки до отказа (или времени безотказной работы); σ – среднеквадратическое отклонение наработки до отказа T по результатам испытаний систем.

Нормальное распределение описывает поведение случайных величин в диапазоне (- ∞, ∞), но т.к. наработка до отказа является не отрицательной величиной, чтобы это учесть, то вместо нормального в принципе должно использоваться усеченное нормальное распределение.

Область возможных значений случайной величины может быть от 0 до ∞ (0 при t=0). Усеченное нормальное распределение применят, если m < 3σ, в противном случае использование более простого нормального (не усеченного) распределения дает достаточную точность.

Показатели надежности нормального распределения:

P(t)
f(t)
l(t) P(t) f(t)

Рисунок 3.2 - Графики изменения показателей надежности при нормальном распределении

Лекция 4

Цель лекции: обучение методам расчета показателей надежности восстанавливаемых систем.

Лекция 5

Цель лекции: Изучение методов расчета надежности невосстанавливаемых систем при различных сложностях структурной схемы расчета надежности.

5.1 Методы расчета надежности невосстанавливаемых систем

При расчете вероятности безотказной работы, средней наработки до первого отказа элементы системы рассматриваются как невосстанавливаемые. В этом случае при основном (последовательном) соединении элементов (рисунок 5.1) вероятность безотказной работы вычисляется как произведение вероятностей всех элементов:

P с (t) = Р 1 (t ) Р 2 (t ) ....Р n -1 (t ) Р n (t )= (5.1)

Рисунок 5.1 – Структурная схема расчета надежности, последовательное соединение элементов

При резервном (параллельном) соединении элементов (рисунок 5.2) и при условии, что для работы системы достаточно работы одного из включенных параллельно элементов, отказ системы является совместным событием, имеющим место при отказе всех параллельно включенных элементов. Если параллельно включено элементов и вероятность отказа каждого, то вероятность отказа этой системы:

Q c (t) = Q 1 (t ) Q 2 (t ) ....Q m-1 (t ) Q m (t )= (5.2)

Рисунок 5.2 – Структурная схема расчета надежности, параллельное соединение элементов

Если структурная схема надежности состоит из последовательно-параллельного соединения, то расчет надежности использует формулы (5.1) и (5.2). Например, на рисунке 5.3 представлена схема, а уравнение 5.3 демонстрирует расчет функции надежности для этой схемы.


Рисунок 5.3 – Структурная схема расчета надежности, смешанное

соединение элементов

Pc(t)= P1(t)*P2(t)*P3456(t) = P1(t)*P2(t)*{1-} (5.3)

Однако, не все структурные схемы расчета надежности могут быть сведены к последовательно-параллельному соединению. На рисунке 5.4 представлена одинарная мостиковая схема расчета надежности.


Рисунок 5.4 – Мостиковая схема соединения элементов

Для всех элементов схемы известны вероятности безотказной работы Р1,Р2,Р3,Р4,Р5 и соответствующие им вероятности отказа типа «обрыв» q1,q2,q3,q4,q5. Необходимо определить вероятность наличия цепи между точками a и b схемы 5.4.

Метод перебора состояний

Расчету надежности любой системы независимо от используемого метода предшествует определение двух непересекающихся множеств состояний элементов, соответствующих работоспособному и неработоспособному состояниям системы. Каждое из этих состояний характеризуется набором элементов, находящихся в работоспособном и неработоспособном состояниях.

Поскольку при независимых отказах вероятность каждого из состояний определяется произведением вероятностей нахождения элементов в соответствующих состояниях, то при числе состояний, равном m , вероятность работоспособного состояния системы определяется выражением:

P = ; (5.1)

Вероятность отказа: Q = 1- (5.2)

где m – общее число работоспособных состояний, в каждом j-м из которых число исправных элементов равно вышедших из строя - kj.

При сравнительно простой структуре системы применение метода перебора состояний сопряжено с громоздкими выкладками. Например, для схемы на рисунке 5.4 составим таблицу состояний, переводя сначала по одному, затем по два, по три элемента в неработоспособное состояние, сохраняя работоспособное состояние системы.

Т а б л и ц а 5.1

№ состояния Состояние элементов Вероятность состояний
+ + + + + Р1,Р2,Р3,Р4,Р5
- + + + + q1,Р2,Р3,Р4, Р5 q1,q2,q3,q4,q5
+ - + + + Р1, q2,Р3,Р4,Р5
+ + - + + Р1,Р2, q3,Р4,Р5
+ + + - + Р1,Р2,Р3, q4,Р5
+ + + + - Р1,Р2,Р3,Р4, q5
- + - + + q1,Р2, q3,Р4,Р5
- + + - + q1,Р2,Р3, q4,Р5
- + + + - q1,Р2,Р3,Р4, q5
+ - - + + Р1, q2, q3,Р4,Р5
+ - + - + Р1, q2,Р3, q4,Р5
+ - + + - Р1, q2,Р3,Р4, q5
+ + - + - Р1,Р2, q3,Р4, q5
+ + + - - Р1,Р2,Р3,Р4,Р5
- + - + - q1,Р2, q3,Р4, q5
+ - + - - Р1, q2,Р3, q4, q5

Если все элементы системы равнонадежны, то вероятность безотказной работы системы при p i =0,9:

Р с = = р 5 +5р 4 q+8p 3 q 2 +2p 2 q 3 = 0,978

Лекция 6

Цель лекции: Изучение основных способов повышения надежности за счет резервирования.

Виды резервирования

Для повышения надежности систем и элементов применяют резервирование, основанное на использовании того или иного вида избыточности.

Избыточность определяет следующие разновидности резервирования: функциональное, временное, информационное, структурное.

В этом случае, если различные системы или устройства выполняют близкие функции, осуществляется функциональное резервирование. Такое резервирование часто применяют для многофункциональных систем. Например, значение температуры пара на выходе котлоагрегата может быть определено по показаниям потенциометра, осуществляющего в комплекте с термоэлектрическим преобразователем индивидуальный контроль ответственного параметра, и с помощью вызова этого параметра на электронное табло информационно-измерительной системы, осуществляющей расчет технико-экономических и других показателей.

Временное резервирование заключается в том, что допускается перерыв функционирования системы или устройства из-за отказа элемента. Во многих случаях временное резервирование, обеспечивающее непрерывность технологического процесса, осуществляется за счет введения аккумулирующих емкостей, складов сырья и полуфабрикатов. Например, кратковременный перерыв в подаче топлива не приведет к прекращению генерации пара из-за аккумуляции теплоты поверхностям нагрева котлоагрегата.

Информационное резервирование связано с возможностью компенсации потери информации по одному каналу информацией по другому каналу.

На большинстве технологических объектов, благодаря внутренним связям имеет место информационная избыточность, которая часто используется для оценки достоверности информации.

Например, усредненный расход пара на выходе котла соответствует усредненному расходу воды на его выходе, расход газа на котле определяет расход воздуха при фиксированном составе дымовых газов.

Для локальных систем наиболее характерно структурное резервирование. При этом виде резервирования повышение надежности достигается путем введения дополнительных элементов в структуру системы.

Структурное резервирование

Структурное резервирование разделяют на общее и поэлементное (раздельное). При общем резервировании система или устройство резервируется в целом, при поэлементном резервируются отдельные элементы или их группы.

Если резервные элементы функционируют наравне с основными элементами, то имеет место постоянное резервирование, являющееся пассивным. Если резерв вводится в состав системы после отказа основного элемента и сопровождается переключающимися операциями, то имеет место резервирование замещением – активное резервирование.

Схемы общего постоянного (а) и общего резервирования замещением (б) приведены на рисунке 6.1.


Рисунок 6.1 - Схемы общего резервирования

При поэлементном способе резервирования (рисунок 6.2 а- постоянном, б - замещением) резервные элементы могут находиться в нагруженном, облегченном и ненагруженном состоянии.

При нагруженном (горячем) резерве интенсивность отказов основного о и резервного н элементов одинакова, о = н. У облегченного (теплого) резерва интенсивность отказов резервных элементов об ниже, чем у основных работающих, о > об.

При ненагруженном (холодном) резерве вероятностью отказов элементов в состоянии резерва можно пренебречь, х = 0.


Рисунок 6.2 – Схемы поэлементного резервирования

При резервировании замещением один и тот же резерв может быть использован для замены любого из ряда однотипных элементов. Такой способ резервирования называют скользящим или с неоднозначным соответствием.

В подсистемах автоматизированных систем управления широко используются все рассмотренные способы резервирования. В локальных системах в основном применяют поэлементное (рисунок 6.2,б) резервирование замещением с ненагруженным резервом.

Отказавшие первичные и вторичные приборы, регулирующие блоки и блоки управления, исполнительные механизмы заменяют исправными (со склада).

Для характеристики соотношения между общим числом однотипных элементов n и числом r необходимых для функционирования системы работающих элементов вводится понятие кратности резервирования

k = (n - r)/r. (6.1)

Значение k может быть целым, если r =1 , и дробным, если r >1 . В этом случае дробь нельзя сокращать.

Скользящее резервирование является разновидностью резервирования с дробной кратностью. Структурное резервирование сопряжено с дополнительными затратами на резервные элементы, то они должны окупаться за счет повышения надежности системы и снижения потерь от ее отказов.

Наиболее простыми показателями эффективности резервирования является следующее выражение:

В τ = τ р /τ; В р = Р р /Р ; В Q = Q/Q р (6.2)

где В τ – выигрыш за счет повышения средней наработки до отказа резервированной системы τ р по сравнению с наработкой нерезервированной системы τ; В р и В Q – аналогичные показатели по повышению вероятности безотказной работы и снижению вероятности отказа.

Резервирование эффективно, если значение показателей В р , В Q и В τ больше единицы.

Лекция 7

Цель лекции: обучение методам расчета надежности невосстанавливаемых систем с постоянным резервом

Поэлементное резервирование

Надежность системы, содержащей группы элементов или отдельные элементы с поэлементным резервированием (рисунок 7.3,б), рассчитываются с использованием формул общего постоянного резервирования (5.1) и (5.2). Так, если система состоит из n участков с поэлементным резервированием целой кратностью k i , то вероятность безотказной работы системы:

где q ij – вероятность отказа j–го элемента, входящего в i–й участок резервирования. Для сопоставления эффективности общего и поэлементного резервирования сравним вероятности отказа двух систем, включающих одинаковое n(k+1) число равнонадежных элементов. Вероятность отказа системы с общим резервированием:

Считая, что вероятность отказа каждого из элементов q<<1 (1-q) n ≈1-nq, Q op =n k +1 q k +1 . Для раздельного резервирования, используя (7.3) и считая q<<1, получаем: Q пр =1-(1-q k +1) n ≈nq k +1 .

Эффективность поэлементного резервирования по сравнению с общим Q op /Q пр составит n k . С увеличением глубины n и кратности k резервирования его эффективность растет. Использование поэлементного резервирования сопряжено с введением дополнительных подключающих элементов, имеющих ограниченную надежность. В связи с этим имеется оптимальная глубина резервирования n опт, при n> n опт эффективность резервирования снижается.

Лекция 8

Цель лекции: Обучение основным методам расчета надежности восстанавливаемых систем в процессе эксплуатации.

Лекция 9

Цель лекции: Обучение основных практических методов оценки надежности по результатам испытаний.

Определительные испытания

Определительным испытаниям могут подвергаться автоматизированные системы управления в целом, их подсистемы, функции, технические средства и любые другие элементы систем.

Перед началом определительных испытаний составляется план испытаний . Планом испытаний называют правила, устанавливающие объем выборки, порядок их проведения испытаний и критерии их прекращения. Рассмотрим наиболее распространенные планы определительных испытаний. Наименование плана принято обозначать тремя буквами (цифрами): первая из них обозначает число испытуемых систем, вторая – наличие R или отсутствие U восстановлений на время испытаний в случае отказа, третья – критерий прекращения испытаний.

План соответствует одновременному испытанию систем. Эти системы после отказа не восстанавливаются (или же восстанавливаются, но данные о их поведении после первого отказа в испытаниях не рассматриваются). Испытания прекращают по истечении наработки каждой отказавшей системы. На рисунке 9.1,а знаком «х» обозначено наличие отказа; t i - наработка до отказа i –ой системы. Этот план обычно применяют для определения вероятности безотказной работы системы за время Ť.

Рисунок 9.1 – Планы испытаний

Испытания прекращают по истечении наработки каждой отказавшей системы. Этот план обычно применяют для определения вероятности безотказной работы системы за указанное время Ť.

План – соответствует испытаниям N таких же невосстанавливаемых систем, однако в отличие от плана испытание прекращают, когда число отказавщих систем достигает r. На рисунке 9.1,б, r -ый отказ имеет место у i–ой системы. Если r = N , переходим к плану , когда испытания прекращаются после отказов всех систем.

План обычно применяют для определения средней наработки до отказа в случае экспоненциального распределения, а план – в случае нормального распределения. Испытания по плану требуют значительных времени и числа испытываемых систем, но дают возможность полностью определить эмпирическую функцию распределения. Планы , позволяют определить эмпирическую функцию распределения только для некоторого интервала времени, дают меньше информации, зато позволяют быстрее закончить испытания.

План – описывает испытания N систем причем отказавшие во время испытаний системы заменяют новым или восстанавливают. Испытания прекращают по истечении наработки Ť каждой из позиций (под позицией понимаем определенное место на стенде или объекте, применительно к которому наработка исчисляется независимо от произошедших на данной позиции замен или восстановлений – рисунок 9.1, в)

План – соответствует испытанияv N систем, когда отказавшие во время испытаний системы заменяют новыми или восстанавливают. Испытание прекращают, когда суммарное по всем позициям число отказавших систем достигает r (рисунок 9.1,г).

Задачами планирования является определение минимального объема наблюдений – выбор числа испытываемых систем N, а также продолжительности наблюдений Ť для планов и или числа отказов r для планов и .

Результатами определительных испытаний должны являться точечные и интервальные оценки показателей надежности.

Точечная оценка понятие математической статистики. Пусть имеются результаты k наблюдений t 1 , t 2 ,….t k над некоторой случайной величиной Т с функцией распределения F(t,υ), причем праметр υ этого распределения неизвестен. Необходимо найти такую функцию ῦ=g(t 1 ,t 2 ,….t k) результатов наблюдений t 1 ,….t k , которую можно было рассматривать как оценку параметра υ. При таком выборе финкций g каждой совокупности (t 1 ,….t k) будет соответствовать точка ῦ на числововй оси, которую называют точечной оценкой параметра υ.

Статистические определения показателей надежности, приведенные в лекции 2, являются их точечными оценками. При этом оценка средней наработки до отказа, соответствует плану , так как здесь рассматриваются завершенные (не прерванные в испытаниях) наработки до отказа каждой из испытуемых систем.

где S - суммарная наработка всех систем за время испытаний; n S - суммарное число отказов всех систем на время испытаний.

Например, при плане

При плане оценка параметра потока отказов совпадает с оценкой интенсивности отказов :

При нормальном распределении и плане :

(9.7)
(9.8)
Для рассмотрения точности оценки вводится понятие доверительного интервала. Интервальные оценки заключается в определение доверительного интервала. Примем, что имеются результаты k наблюдений t 1 ,t 2… ,t k над случайной величиной Т с функцией распределения F(t,V) , где параметр V неизвестен. Необходимо найти такую функцию V н =g н (t 1 ,t 2… ,t k) результатов наблюдений, чтобы интервал (V н, ∞) накрывал неизвестный параметр V с заданной вероятностью γ 1:

Величину V Н называют нижней доверительной границей параметра V при односторонней доверительной вероятности γ 1 .

Для заданной вероятности γ 2 по той же совокупности наблюдений может быть найдена функция V вр = g вр (t 1 ,t 2… ,t k) такая, что интервал (0, V вр) накрывает параметр V с вероятностью γ 2:

(9.9)

Величину V ВР называют верхней доверительной границей параметра V при односторонней доверительной вероятности γ 2.

Нижняя и верхняя доверительные границы образуют доверительный интервал, который с вероятностью γ накрывает на числовой оси неизвестное значение параметра V. При γ 1 >0,5 и γ 2 >0,5 (доверительные вероятности γ 1 и γ 2 обычно выбираются не менее 0,8) согласно (9.8) и (9.9):

где γ = γ 1 + γ 2 -1; Обычно принимают, что γ 1 = γ 2, тогда γ = 2 γ 1 – 1.

Значение доверительного интервала тем меньше. Чем больше число наблюдений (например, чем больше число отказов при испытаниях) и чем меньше значение γ доверительной вероятности.

Определение границ доверительного интервала заключается в следующем. Так как оценка неизвестного параметра V является случайной величиной, то находим закон ее распределения. Затем определяем интервал (V Н, V ВР), в которой случайная величина попадает с вероятностью γ.

Контрольные испытания

Контрольным испытаниям обычно подвергаются подсистемы, технические средства и их элементы. Для технических средств обязательными являются контрольные испытания на безотказность.

Испытания на ремонтопригодность, сохраняемость и долговечность проводят в тех случаях, когда это предусмотрено стандартами, техническими заданиями или техническими условиями на конкретный прибор (средства).

Периодичность контрольных испытаний на безотказность обычно не реже одного раза в три года.

Для проведения контрольных испытаний из совокупности (партия) однородных приборов составляется некоторая выборка и проводятся испытания на надежность попавших в эту партию приборов.

По результатам испытания выборки выносится суждение о соответствии всей партии предъявленным требованиям.

Математический аппарат решения задачи – изучаемые в математической статистике методы проверки статистических гипотез.

В качестве проверяемой (или, как принято говорить, нулевой) гипотезы принимается предположение, что партия соответствует требованиям к надежности, в качестве противоположной (альтернативной) – что партия не удовлетворяет этим требованиям.

По результатам испытаний имеет место одна из следующих четырех ситуаций:

1. Партия удовлетворяет требованиям; по результатам испытаний подтвердилась нулевая гипотеза и принято решение о принятии партии. Это решение правильно.

2. Партия удовлетворяет требованиям, но по результатам испытаний нулевая гипотеза не подтвердилась. Это произошло потому, что случайно составленная выборка содержала повышенное число отказавших приборов по сравнению с совокупностью. Принята альтернативная гипотеза; это решение неправильно и невыгодно для изготовителя приборов. При этом произошла ошибка, вероятность которой называют риском поставщика (изготовителя) α.

3. Партия не удовлетворяет требованиям, по результатам испытаний нулевая гипотеза не подтвердилась. Принята альтернативная гипотеза, т.е. решение о неприятии партии. Это решение правильно.

4. Партия не удовлетворяет требованиям, но по результатам испытаний подтвердилась нулевая гипотеза о соответствии требованиям надежности, так как выборка содержала повышенное число неотказавших приборов по сравнению со всей партией. Принято решение, но оно не выгодно в отличие от п. 2 не изготовителю, а потребителю – заказчику эти приборов. Произошла ошибка, вероятность которой называют риском потребителя (заказчика) β.

Естественно, что желательно снизить значения обеих ошибок, доведя их до нуля. Зависимость вероятности L приемки партии от показателя надежности А (называемой оперативной характеристикой плана контроля) для такой предельной ситуации дана на рисунке 9.2,а. Пусть А тр – требуемое значение показателя надежности. В этой ситуации нулевая гипотеза А≥ А тр. Если она справедлива, то партия принимается с вероятностью равной единице, причем α=0. Альтернативная гипотеза заключается в том, что А£ А тр. При этом партия бракуется с вероятностью, равной единице, причем β=0.Однако такая идеальная оперативная характеристика недостижима, так как требует бесконечного объема наблюдений.

В реальной ситуации вводятся два уровня контролируемого показателя надежности: приемочный А α и браковочный А β (рисунок 9.2,б).

Рисунок 9.2 – Идеальная (а) и реальная (б) оперативные характеристики планов контроля

Если А≥ А α , то приборы должны приниматься с достаточно высокой вероятностью, не ниже L(А α) , если А£ А β , то приборы должны браковаться с достаточно высокой вероятностью, не ниже 1 – L(А β). При этом риск поставщика α=1-L(А α), риск потребителя β=1-L(А β). Тем самым проверку нулевой гипотезы А≥ А тр при альтернативе А£ А тр заменяем другой задачей – проверкой нулевой гипотезы А≥ А α при альтернативе А£ А β . Чем ближе А α к А β , тем больший объем испытаний необходим для принятия достоверного решения о соответствии партии.

Значение браковочного уровня А β устанавливается с учетом приемочного уровня А α , стоимости, продолжительности и условий испытаний и т.п.

Риск поставщика α и потребителя β обычно принимается равным 0,1-0,2, но в принципе по согласованию между потребителем и поставщиком возможен выбор и иных значений α и β.

Контрольные испытания на безотказность проводятся обычно одно- или двухступенчатым методом. При применении первого из них испытания выполняют следующим образом. Образцы, вошедшие в выборку объема d, испытывают в течение времени t и. По окончании испытаний определяют число наступивших отказов n. Если оно равно или меньше приемочного числа с, определенного в зависимости от величины А α , А β , α и β, то нулевая гипотеза подтверждается и партию принимают. Если же n>с, то подтверждается альтернативная гипотеза и партию не принимают. Одноступенчатый метод при прочих равных условиях обеспечивает минимальную календарную продолжительность испытаний, двухступенчатый при тех же условиях позволяет обеспечить минимум среднего объема испытаний.

Лекция 10

Цель лекции: Обучение основным методам повышения надежности на этапе проектирования и эксплуатации.

Лекция 11

Цель лекции: Обучение основных принципам оценки надежности программного обеспечения приборов и систем

Предварительные замечания

В основу перечня положен ГОСТ 27.002-89 "Надежность в технике. Основные понятия. Термины и определения", формулирующий применяемые в науке и технике термины и определения в области надежности. Однако не все термины охватываются указанным ГОСТом, поэтому в отдельных пунктах введены дополнительные термины, отмеченные "звездочкой" (*).

Объект, элемент, система

В теории надежности используют понятия объект, элемент, система.

Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации.

Объектами могут быть различные системы и их элементы, в частности: сооружения, установки, технические изделия, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали.
Элемент системы - объект, представляющий отдельную часть системы. Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов.

Понятия система и элемент выражены друг через друга, поскольку одно из них следовало бы принять в качестве исходного, постулировать. Понятия эти относительны: объект, считавшийся системой в одном исследовании, может рассматриваться как элемент, если изучается объект большего масштаба. Кроме того, само деление системы на элементы зависит от характера рассмотрения (функциональные, конструктивные, схемные или оперативные элементы), от требуемой точности проводимого исследования, от уровня наших представлений, от объекта в целом.

Человек -оператор также представляет собой одно из звеньев системы человек-машина.

Система - объект, представляющий собой совокупность элементов, связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции.

Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели. Системы функционируют в пространстве и времени.

Состояние объекта

Исправность - состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией (НТД).

Неисправность - состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных НТД.

Работоспособность - состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров в пределах, установленных НТД.

Основные параметры характеризуют функционирование объекта при выполнении поставленных задач и устанавливаются в нормативно-технической документации.

Неработоспособность - состояние объекта, при котором значение хотя бы одного заданного параметра характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным НТД.

Понятие исправность шире, чем понятие работоспособность. Работоспособный объект в отличие от исправного удовлетворяет лишь тем требованиям НТД, которые обеспечивают его нормальное функционирование при выполнении поставленных задач.

Работоспособность и неработоспособность в общем случае могут быть полными или частичными. Полностью работоспособный объект обеспечивает в определенных условиях максимальную эффективность его применения. Эффективность применения в этих же условиях частично работоспособного объекта меньше максимально возможной, но значения ее показателей при этом еще находятся в пределах, установленных для такого функционирования, которое считается нормальным. Частично неработоспособный объект может функционировать, но уровень эффективности при этом ниже допускаемого. Полностью неработоспособный объект применять по назначению невозможно.
Понятия частичной работоспособности и частичной неработоспособности применяют главным образом к сложным системам, для которых характерна возможность нахождения в нескольких состояниях. Эти состояния различаются уровнями эффективности функционирования системы. Работоспособность и неработоспособность некоторых объектов могут быть полными, т.е. они могут иметь только два состояния.
Работоспособный объект в отличие от исправного обязан удовлетворять лишь тем требованиям НТД, выполнение которых обеспечивает нормальное применение объекта по назначению. При этом он может не удовлетворять, например, эстетическим требованиям, если ухудшение внешнего вида объекта не препятствует его нормальному (эффективному) функционированию.

Очевидно, что работоспособный объект может быть неисправным, однако отклонения от требований НТД при этом не настолько существенны, чтобы нарушалось нормальное функционирование.
Предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению должно быть прекращено из-за неустранимого нарушения требований безопасности или неустранимого отклонения заданных параметров за установленные пределы, недопустимого увеличения эксплуатационных расходов или необходимости проведения капитального ремонта.

Признаки (критерии) предельного состояния устанавливаются НТД на данный объект.

Невосстанавливаемый объект достигает предельного состояния при возникновении отказа или при достижении заранее установленного предельно допустимого значения срока службы или суммарной наработки, устанавливаемых из соображений безопасности эксплуатации в связи с необратимым снижением эффективности использования ниже допустимой или в связи с увеличением интенсивности отказов, закономерным для объектов данного типа после установленного периода эксплуатации.
Для восстанавливаемых объектов переход в предельное состояние определяется наступлением момента, когда дальнейшая эксплуатация невозможна или нецелесообразна вследствие следующих причин:
- становится невозможным поддержание его безопасности, безотказности или эффективности на минимально допустимом уровне;
- в результате изнашивания и (или) старения объект пришел в такое состояние, при котором ремонт требует недопустимо больших затрат или не обеспечивает необходимой степени восстановления исправности или ресурса.

Для некоторых восстанавливаемых объектов предельным состоянием считается такое, когда необходимое восстановление исправности может быть осуществлено только с помощью капитального ремонта.
Режимная управляемость* - свойство объекта поддерживать нормальный режим посредством управления с целью сохранения или восстановления нормального режима его работы.

Переход объекта в различные состояния

Повреждение - событие, заключающееся в нарушении исправности объекта при сохранении его работоспособности.

Отказ - событие, заключающееся в нарушении работоспособности объекта.

Критерий отказа - отличительный признак или совокупность признаков, согласно которым устанавливается факт отказа.

Признаки (критерии) отказов устанавливаются НТД на данный объект.
Восстановление - процесс обнаружения и устранения отказа (повреждения) с целью восстановления его работоспособности (исправности).

Восстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа подлежит восстановлению в рассматриваемых условиях.

Невосстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа не подлежит восстановлению в рассматриваемых условиях.

При анализе надежности, особенно при выборе показателей надежности объекта, существенное значение имеет решение, которое должно быть принято в случае отказа объекта. Если в рассматриваемой ситуации восстановление работоспособности данного объекта при его отказе по каким-либо причинам признается нецелесообразным или неосуществимым (например, из-за невозможности прерывания выполняемой функции), то такой объект в данной ситуации является невосстанавливаемым. Таким образом, один и тот же объект в зависимости от особенностей или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым. Например, аппаратура метеоспутника на этапе хранения относится к восстанавливаемой, а во время полета в космосе - невосстанавливаемой. Более того, даже один и тот же объект можно отнести к тому или иному типу в зависимости от назначения: ЭВМ, используемая для неоперативных вычислений, является объектом восстанавливаемым, так как в случае отказа любая операция может быть повторена, а та же ЭВМ, управляющая сложным технологическим процессом в химии, является объектом невосстанавливаемым, так как отказ или сбой приводит к непоправимым последствиям.
Авария* - событие, заключающееся в переходе объекта с одного уровня работоспособности или относительного уровня функционирования на другой, существенно более низкий, с крупным нарушением режима работы объекта. Авария может привести к частичному или полному разрушению объекта, созданию опасных условий для человека и окружающей среды.

Временные характеристики объекта

Наработка - продолжительность или объем работы объекта. Объект может работать непрерывно или с перерывами. Во втором случае учитывается суммарная наработка. Наработка может измеряться в единицах времени, циклах, единицах выработки и др. единицах. В процессе эксплуатации различают суточную, месячную наработку, наработку до первого отказа, наработку между отказами, заданную наработку и т.д.
Если объект эксплуатируется в различных режимах нагрузки, то, например, наработка в облегченном режиме может быть выделена и учитываться отдельно от наработки при номинальной нагрузке.

Технический ресурс - наработка объекта от начала его эксплуатации до достижения предельного состояния.

Обычно указывается, какой именно технический ресурс имеется в виду: до среднего, капитального, от капитального до ближайшего среднего и т.п. Если конкретного указания не содержится, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех (средних и капитальных) ремонтов, т.е. до списания по техническому состоянию.

Срок службы - календарная продолжительность эксплуатации объекта от ее начала или возобновления после капитального или среднего ремонта до наступления предельного состояния.

Под эксплуатацией объекта понимается стадия его существования в распоряжении потребителя при условии применения объекта по назначению, что может чередоваться с хранением, транспортированием, техническим обслуживанием и ремонтом, если это осуществляется потребителем.

Срок сохраняемости - календарная продолжительность хранения и (или) транспортирования объекта в заданных условиях, в течение и после которой сохраняются значения установленных показателей (в том числе и показателей надежности) в заданных пределах.

Определение надежности
Работа любой технической системы может характеризоваться ее эффективностью (рис. 4.1.1), под которой понимается совокупность свойств, определяющих способность системы выполнять при ее создании определенные задачи.

Рис. 4.1.1. Основные свойства технических систем

В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Таким образом:
1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности.

Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы).

Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость.

Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Ремонтопригодность - свойство объекта быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта.

Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов.

Сохраняемость - свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки.

Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

Показатели безотказности и ремонтопригодности
Наработка до отказа - вероятность того, что в пределах заданной наработки отказ объекта не возникнет (при условии работоспособности в начальный момент времени).
Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа".

Средняя наработка до отказа - математическое ожидание случайной наработки объекта до первого отказа.
Средняя наработка между отказами - математическое ожидание случайной наработки объекта между отказами.

Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению.
Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки.

Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.
Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта).

Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени.

Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.

Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и начиная с этого момента времени будет работать безотказно в течение заданного времени.

Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности.

Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени.
Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс.

Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.
Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени.

Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.

Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

Показатели долговечности и сохраняемости

Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью 1- ?.

Средний ресурс - математическое ожидание ресурса.

Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

Средний ремонтный ресурс - средний ресурс между смежными капитальными ремонтами объекта.

Средний ресурс до списания - средний ресурс объекта от начала эксплуатации до его списания.

Средний ресурс до капитального ремонта средний ресурс от начала эксплуатации объекта до его первого капитального ремонта.

Гамма-процентный срок службы - срок службы, в течение которого объект не достигает предельного состояния с вероятностью 1- ?.

Средний срок службы - математическое ожидание срока службы.

Средний межремонтный срок службы - средний срок службы между смежными капитальными ремонтами объекта.

Средний срок службы до капитального ремонта - средний срок службы от начала эксплуатации объекта до его первого капитального ремонта.

Средний срок службы до списания - средний срок службы от начала эксплуатации объекта до его списания.

Гамма-процентный срок сохраняемости - продолжительность хранения, в течение которой у объекта сохраняются установленные показатели с заданной вероятностью 1- ?.

Средний срок сохраняемости - математическое ожидание срока сохраняемости.

Виды надежности

Многоцелевое назначение оборудования и систем приводит к необходимости исследовать те или другие стороны надежности с учетом причин, формирующих надежностные свойства объектов. Это приводит к необходимости подразделения надежности на виды.

Различают:
- аппаратурную надежность, обусловленную состоянием аппаратов; в свою очередь она может подразделяться на надежность конструктивную, схемную, производственно-технологическую;
- функциональную надежность, связанную с выполнением некоторой функции (либо комплекса функций), возлагаемых на объект, систему;
- эксплуатационную надежность, обусловленную качеством использования и обслуживания;
- программную надежность, обусловленную качеством программного обеспечения (программ, алгоритмов действий, инструкций и т.д.);
- надежность системы "человек-машина", зависящую от качества обслуживания объекта человеком-оператором.

Характеристики отказов

Одним из основных понятий теории надежности является понятие отказа (объекта, элемента, системы).
Отказ объекта - событие, заключающееся в том, что объект полностью или частично перестает выполнять заданные функции. При полной потере работоспособности возникает полный отказ, при частичной - частичный. Понятия полного и частичного отказов каждый раз должны быть четко сформулированы перед анализом надежности, поскольку от этого зависит количественная оценка надежности.

По причинам возникновения отказов в данном месте различают:
отказы из-за конструктивных дефектов;
отказы из-за технологических дефектов;
отказы из-за эксплуатационных дефектов;
отказы из-за постепенного старения (износа).
Отказы вследствие конструктивных дефектов возникают как следствие несовершенства конструкции из-за "промахов" при конструировании. В этом случае наиболее распространенными являются недоучет "пиковых" нагрузок, применение материалов с низкими потребительскими свойствами, схемные "промахи" и др. Отказы этой группы сказываются на всех экземплярах изделия, объекта, системы.
Отказы из-за технологических дефектов возникают как следствие нарушения принятой технологии изготовления изделий (например, выход отдельных характеристик за установленные пределы). Отказы этой группы характерны для отдельных партий изделий, при изготовлении которых наблюдались нарушения технологии изготовления.

Отказы из-за эксплуатационных дефектов возникают по причине несоответствия требуемых условий эксплуатации, правил обслуживания действительным. Отказы этой группы характерны для отдельных экземпляров изделий.

Отказы из-за постепенного старения (износа) вследствие накопления необратимых изменений в материалах, приводящих к нарушению прочности (механической, электрической), взаимодействия частей объекта.

Отказы по причинным схемам возникновения подразделяются на следующие группы:
отказы с мгновенной схемой возникновения;
отказы с постепенной схемой возникновения;
отказы с релаксационной схемой возникновения;
отказы с комбинированными схемами возникновения.
Отказы с мгновенной схемой возникновения характеризуются тем, что время наступления отказа не зависит от времени предшествующей эксплуатации и состояния объекта, момент отказа наступает случайно, внезапно. Примерами реализации такой схемы могут служить отказы изделий под действием пиковых нагрузок в электрической сети, механическое разрушение посторонним внешним воздействием и т.п.
Отказы с постепенной схемой возникновения происходят за счет постепенного накопления вследствие физико-химических изменений в материалах повреждений. При этом значения некоторых "решающих" параметров выходят за допустимые границы и объект (система) не способен выполнять заданные функции. Примерами реализации постепенной схемы возникновения могут служить отказы вследствие снижения сопротивления изоляции, электрической эрозии контактов и т.п.

Отказы с релаксационной схемой возникновения характеризуются первоначальным постепенным накоплением повреждений, которые создают условия для скачкообразного (резкого) изменения состояния объекта, после которого возникает отказное состояние. Примерами реализации релаксационной схемы возникновения отказов могут служить пробой изоляции кабеля вследствие коррозионного разрушения брони.

Отказы с комбинированными схемами возникновения характерны для ситуаций, когда одновременно действуют несколько причинных схем. Примером, реализующим эту схему, может служить отказ двигателя в результате короткого замыкания по причинам снижения сопротивления изоляции обмоток и перегрева.
При анализе надежности необходимо выявлять преобладающие причины отказов и лишь затем, если в этом есть необходимость, учитывать влияние остальных причин.

По временному аспекту и степени предсказуемости отказы подразделяются на внезапные и постепенные.
По характеру устранения с течением времени различают устойчивые (окончательные) и самоустраняющиеся (кратковременные) отказы. Кратковременный отказ называется сбоем. Характерный признак сбоя - то, что восстановление работоспособности после его возникновения не требует ремонта аппаратуры. Примером может служить кратковременно действующая помеха при приеме сигнала, дефекты программы и т.п.
Для целей анализа и исследования надежности причинные схемы отказов можно представить в виде статистических моделей, которые вследствие вероятностного возникновения повреждений описываются вероятностными законами.

Виды отказов и причинные связи

Отказы элементов систем являются основными предметами исследования при анализе причинных связей.
Как показано во внутреннем кольце (рис.4.1.2), расположенном вокруг "отказа элементов", отказы могут возникать в результате:
1) первичных отказов;
2) вторичных отказов;
3) ошибочных команд (инициированные отказы).

Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы.

Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.
Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Рис. 4.1.2. Характеристики отказов элементов

Примером вторичных отказов служит "срабатывание предохранителя от повышенного электрического тока", "повреждение емкостей для хранения при землетрясении". Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.
Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: "напряжение приложено самопроизвольно к обмотке реле", "переключатель случайно не разомкнулся из-за помех", "помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку", "оператор не нажал на аварийную кнопку" (ошибочная команда от аварийной кнопки).

Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:
- конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);
- ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);
- воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);
- внешние катастрофические воздействия (естественные внешние явления, такие, как наводнение, землетрясение, пожар, ураган);
- общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);
- общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);
- неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия. Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т.д.

Указанные выше свойства технических объектов и промышленная безопасность - взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей по его безопасности. В то же время, перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

  • 7. Структурно-логический анализ технических систем. Структурно - логические схемы надежности технических систем.
  • 8. Структурно-логический анализ технических систем. Анализ структурной надежности технических систем. Последовательность операций.
  • 9. Расчеты структурной надежности систем. Общая характеристика.
  • 10. Расчеты структурной надежности систем. Системы с последовательным соединением элементов.
  • 11. Расчеты структурной надежности систем. Системы с параллельным соединением элементов.
  • 13. Почти тоже что в 12
  • 14. Расчеты структурной надежности систем. Мостиковые системы. Метод прямого перебора.
  • 15. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных сечений.
  • 16. Расчеты структурной надежности систем. Мостиковые системы. Метод минимальных путей.
  • 17. Расчеты структурной надежности систем. Мостиковые системы. Метод разложения относительно особого элемента.
  • 18. Расчеты структурной надежности систем. Комбинированные системы.
  • 19. Повышение надежности технических систем. Методы повышения надежности
  • 23. Повышение надежности технических систем. Расчет надежности систем с облегченным и скользящим резервированием.
  • 26 Основные свойства объекта технического диагностирования. Ремонтопригодность.
  • 27 Основные свойства объекта технического диагностирования. Безотказность. Показатели безотказности.
  • 28.Основные свойства объекта технического диагностирования. Долговечность.
  • 29.Основные свойства объекта технического диагностирования. Сохраняемость.
  • 32. Методы прогнозирования отказов элементов (статистический и аппаратурный).
  • 33.Методы повышения надежности.Разработка.Изготовление.Эксплуатация.
  • 44. Cовременное состояние вопроса диагностики процессов механообработки и мехатронных станочных систем.
  • 45. Диагностика и распознавание образов. Основные понятия распознавания образов.
  • 46. Цель и основные задачи технической диагностики. Прикладные вопросы технической диагностики.
  • 39 Диагностирование цифровых устройств. Метод таблиц истинности.
  • 47.Основные задачи, возникающие при разработке систем
  • 48. Предварительная обработка образов и выбор признаков.
  • 52. Краткий обзор зарубежных и отечественных
  • 53. Станочные системы как объект диагностирования.
  • 55. Автоматизированный контроль и диагностика инструмента в процессе механообработки. Задачи автоматизированного контроля и диагностики инструмента.
  • 1. Надежность автоматизированных технических систем. Понятие надежности. Основные проблемы надежности.

    Надежностью называют свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки. Расширение условий эксплуатации, повышение ответственности выполняемых радиоэлектронными средствами (РЭС) функций, их усложнение приводит к повышению требований к надежности изделий.

    Надежность является сложным свойством, и формируется такими составляющими, как безотказность, долговечность, восстанавливаемость и сохраняемость. Основным здесь является свойство безотказности - способность изделия непрерывно сохранять работоспособное состояние в течение времени. Потому наиболее важным в обеспечении надежности РЭС является повышение их безотказности.

    Особенностью проблемы надежности является ее связь со всеми этапами “жизненного цикла” РЭС от зарождения идеи создания до списания: при расчете и проектировании изделия его надежность закладывается в проект при изготовлении надежность обеспечивается, при эксплуатации - реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор или разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности РЭС. Основным методом решения этой задачи являются расчеты надежности (в первую очередь - безотказности), в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта.

    2 .Количественные характеристики безотказности. Наработка на отказ.

    Безотказность (и другие составляющие свойства надежности) РЭС проявляется через случайные величины, наработку до очередного отказа и количество отказов за заданное время. количественными характеристиками свойства здесь выступают вероятностные переменные.

    Наработка есть продолжительность или объем работы объекта. для РЭС естественно исчисление наработки в единицах времени, тогда как для других технических средств могут быть удобнее иные средства измерения (например, наработка автомобиля - в километрах пробега). Для невосстанавливаемых и восстанавливаемых изделий понятие наработки различается, в первом случае подразумевается наработка до первого отказа (он же является и последним отказом), во втором – между двумя соседними во времени отказами (после каждого отказа производится восстановление работоспособного состояния). Математическое ожидание случайной наработки Т

    (1.1)является характеристикой безотказности и называется средней наработкой на отказ (между отказами). В (1.1) через t обозначено текущее значение наработки, а f(t ) плотность вероятности ее распределения.

    Вероятность безотказной работы t отказ объекта не возникает:

    . (1.2)

    вероятностью отказа q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t t частотой отказов:

    .(1.4)Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:
    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .


    . (1.6)

    t

    (1.7)

    Поток отказов при l (t )=const называется простейшим

    t

    T 0 =1/l , (1.8)т.е. при простейшем потоке отказов средняя наработка Т 0 t = Т 0 , вероятность безотказной работы изделия составляет 1/е. Часто используют характеристику, называемую g - процентной наработкой

    . (1.9)

    3.Вероятность безотказной работы - вероятность того, что в пределах заданной наработкиt отказ объекта не возникает:

    . (1.2)

    Вероятность противоположного события называется вероятностью отказа и до- полняет вероятность безотказной работы до единицы:

    q (t )=Вер(T £ t ) =1 – p (t ) = F (t ). (1.3)

    В (1.2) и (1.3) F(t ) есть интегральная функция распределение случайной наработки t. Плотность вероятности f(t ) также является показателем надежности, называемым частотой отказов:

    Из (1.4) очевидно, что она характеризует скорость уменьшения вероятности безотказной работы во времени.

    4. Интенсивностью отказов называют условную плотность вероятности возникновения отказа изделия при условии, что к моменту t отказ не возник:

    . (1.5)

    Функции f(t ) и l (t ) измеряются в ч -1 .

    Интегрируя (1.5), легко получить:

    . (1.6)

    Это выражение, называемое основным законом надежности, позволяет установить временное изменение вероятности безотказной работы при любом характере изменения интенсивности отказов во времени. В частном случае постоянства интенсивности отказов l (t ) =l = const (1.6) переходит в известное в теории вероятностей экспоненциальное распределение:

    (1.7)

    Поток отказов при l (t )=const называется простейшим и именно он реализуется для большинства РЭС в течении периода нормальной эксплуатации от окончания приработки до начала старения и износа.

    Подставив выражение плотности вероятности f(t ) экспоненциального распределения (1.7) в (1.1), получим:

    T 0 =1/l , (1.8)

    т.е. при простейшем потоке отказов средняя наработка Т 0 обратна интенсивности отказов l. С помощью (1.7) можно показать, что за время средней наработки, t = Т 0 , вероятность безотказной работы изделия составляет 1/е.

    5. Часто используют характеристику, называемую g - процентной наработкой - время, в течении которого отказ не наступит с вероятностью g (%):

    . (1.9)

    Выбор параметра для количественной оценки надежности определяется назначением, режимами работы изделия, удобством применения в расчетах на стадии проектирования.

    "

    Ученый Дунин-Барковский дал такое определение термина «технологическая надежность»: «…свойство технологического оборудования и производственно-технических систем, таких, как станок, система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранить на за-данном уровне выходные параметры качества производимого изделия в течение требуемого времени». Затем А. С. Проников ввел понятие «надежность технологических процессов». Он пишет, что «больший процент отказов различных машин связан с недостаточной надежностью технологического процесса», что...«технологический процесс должен быть надежным, т. с. не допускать таких показателей, которые могут влиять на качество выпускаемых изделий». Вопросы оценки надежности технологических процессов и безотказности рассматриваются также в работах П. И. Бобрика, А. Л. Меерова и др., причем только с точки зрения способности технологических систем, процессов и операций обеспечивать (в течение заданного времени) изготовление продукции с показателями качества в соответствии с установленными требованиями.

    Но очевидно, что изменение во времени характеристик технологических систем может приводить к изменению не только качества изготовления продукции, но и производительности. Отказы технологических систем в большинстве случаев приводят не к появлению бракованных изделий, а к задержке в выполнении задания, что сказывается на производительности оборудования. Поэтому, характеризуя свойство надежности технологических систем, целесообразно его рассматривать с точки зрения выполнения заданий как по показателям качества, так и по объему изготовляемой продукции.

    Таким образом, в технической литературе широкое освещение получили вопросы применения методов теории надежности к анализу свойств технологических систем обеспечивать изготовление продукции в соответствии с требованиями технической документации и в установленном объеме.

    Технологическая система - это совокупность средств технологического оснащения, объектов производства и, в общем случае, исполнителей, необходимая и достаточная для выполнения определенных технологических процессов и операций и находящаяся в состоянии готовности к функционированию или в состоянии функционирования в соответствии с требованиями технической документации. Таким образом, можно рассматривать технологическую систему для выполнения одной операции и технологическую систему для выполнения некоторого процесса, состоящего из отдельных операций

    В технологическую систему входят элементы, для которых обязательно наличие функциональных связей, обеспечивающих протекание технологических процессов изготовления продукции. Частным случаем таких связей являются кинематические связи между отдельными элементами (например, в системе станок - приспособление - инструмент - деталь).

    Надежностью технологической системы будем называть свойство технологической системы выполнять заданные функции, сохраняя показатели качества и ритм выпуска годной продукции в течение требуемых промежутков времени эксплуатации или требуемой наработки. Ритм выпуска - это количество изделий определенного наименования, типоразмера и исполнения, выпускаемых в единицу времени.

    Под понятием «надежность технологического процесса» и «надежность технологической операции» понимается надежность технологической системы, обеспечивающей функционирование рассматриваемого процесса или операции в соответствии с требованиями технической документации.

    Из определений следует, что технологическую систему можно считать надежной в том случае, если она обеспечивает выполнение задания по показателям качества изготовляемой или изготовленной продукции и по параметрам производительности.

    Параметры и свойства технологической системы и ее элементов изменяются в процессе функционирования, т. е. при протекании технологического процесса или операции. Поэтому технологическая система в определенный момент может находиться в работоспособном или неработоспособном состоянии.

    При проведении исследований можно оценивать работоспособность системы как отдельно - по ее способности обеспечивать требуемый уровень качества изготовленной продукции и по параметрам производительности, так и по обоим свойствам одновременно с учетом зависимости между ними.

    Технологическая система работоспособна по параметрам качества, если обеспечивает изготовление продукции с показателями качества, соответствующими требованиям технической документации, и работоспособна по параметрам производительности, если обеспечивает установленный ритм выпуска.

    Отдельные нарушения в технологической системе будем относить к категории повреждений, если они переводят систему из исправного состояния в неисправное, и к отказам, если они переводят систему из работоспособного состояния в неработоспособное.

    Таким образом, отказ технологической системы - это событие, заключающееся в потере работоспособности.

    Отказы в технологических системах могут быть внезапными и постепенными. К постепенным относятся отказы, вызванные неправильным или дискретным характером изменений в состоянии технологической системы и приводящие к постепенной потере работоспособности (износ направляющих станка, инструмента, приспособлений, температурные деформации, старение материала базовых деталей оборудования и т. п.). Внезапными являются отказы, обусловленные отдельными нарушениями, момент наступления которых практически невозможно прогнозировать (поломка инструмента, ошибка наладчика в настройке оборудования, дефекты в материале или заготовках и т. д.).

    В дальнейшем такие постепенные и внезапные отказы будут относиться к категории отказов, обусловленных состоянием системы, т. е. к внутренним отказам. Но технологические системы отдельных операций или процессов могут находиться в состоянии неработоспособности также из-за внешних факторов (нарушение электроснабжения, повреждения помещений, отсутствие материала, заготовок и т. д.). Очевидно, что внешние факторы приводят к снижению надежности по параметрам производительности. К внешним отказам следует относить также простои технологических систем по организационным причинам.

    Для того, чтобы решить проблему повышения надежности машин и механизмов, необходимо не просто констатировать факт отказа, но рассматривать каждый случай преждевременного отказа как событие и устанавливать истинную причину нарушения работоспособности. Анализ должен начинаться с установления места отказа. Каждый вид повреждения или отказа имеет различные формы проявления. Все причины отказов могут быть отнесены к одной из следующих трех основных групп:

    Ошибки проектирования и изготовления;

    Ошибки эксплуатации;

    Внешние причины, т.е. причины, непосредственно не зависящие от рассматриваемого изделия или узла.

    Типичными дефектами конструирования являются: недостаточная защищенность узлов трения, наличие концентраторов напряжения, неправильный расчет несущей способности, неправильный выбор материалов и др. К наиболее типичным дефектам технологии следует отнести: дефекты из-за неправильного состава материала, дефекты при плавке и изготовлении заготовок, ошибки при механической обработке и др. Основными эксплуатационными причинами отказов и повреждений являются: нарушение условий применения; неправильное техническое обслуживание; наличие перегрузок и непредвиденных нагрузок, обусловленных нарушениями в энергоснабжении, влиянием связанных отказов (вторичные повреждения), влиянием явлений природы, попаданием в механизм посторонних предметов и т.д.

    Подобная классификация позволяет только отнести зафиксированный отказ к одной из названных выше причин. Задача заключается в том, чтобы, зная физическую причину разрушения, обеспечить конструирование изделий с установленной долговечностью. Поэтому важно по внешнему виду разрушенной детали сделать правильный предварительный вывод о причинах разрушения.

    При решении любой задачи по оценке надежности технологических систем исходят из следующих предпосылок:

    1) Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изготовленной продукции, уровень которых зависит от рассматриваемой операции. Например, при шлифовании вала обработке подлежит только одна поверхность, а остальные не изменяются. По этому оценка надежности такой операции шлифования зависит от условий обеспечения необходимого размера и шероховатости только обрабатываемой поверхности.

    Многие показатели эргономичности и технической эстетики однозначно определяются конструкцией изделия и не зависят от надежности технологических операций (например, расположение и число точек смазки в изготавливаемом изделии, обзорность и т. д.). Поэтому при расчете надежности технологических операций такие показатели качества готового изделия не должны учитываться.

    2) При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. При оценке же надежности технологических операций (как в процессе технологической подготовки производства, так и в серийном изготовлении) следует только учитывать, насколько процесс изготовления обеспечивает соблюдение установленных требований, и не рассматривать при этом соответствия современному уровню показателей, заложенному в конструкторской документации. Это значит, что технологический процесс может обладать высокой надежностью, хотя полученная при его реализации продукция может относиться ко второй категории качества.

    3) При оценке надежности технологических систем в условиях серийного производства следует исходить из заданных в технологической документации технологических маршрутов, режимов и средств технологического оснащения.

    4) Отработка технологических операции и процессов по показателям надежности на этапе подготовки производства должна проводиться путем отыскания лучшего технологического решения по экономическим критериям и вероятности выполнения задания по показателям качества изготовленной продукции и параметрам производительности.

    Оценка надежности технологических систем сводится к дифференцированной оценке показателей безотказности, долговечности и ремонтопригодности или к вычислению, при необходимости, комплексных показателей, характеризующих одновременно все составные свойства надежности.

    Оценка безотказности сводится к определению:

    Вероятности того, что рассматриваемый технологический процесс (или операция) обеспечит изготовление продукции в соответствии с требуемыми технической документацией показателями качества в течение заданного интервала времени без вынужденных перерывов при одновременном обеспечении заданного объема производства в единицу времени (ритма запуска);

    Средней наработки до отказа;

    Параметра потока отказов.

    При оценке показателей безотказности не учитываются вынужденные простои оборудования, обусловленные организационными причинами.

    Для непрерывных технологических операций за наработку принимается продолжительность работы (ч); для дискретных технологических операций (обработка резанием, штамповка и т. д.) - число обработанных деталей или число обработанных прутков (при изготовлении деталей из пруткового материала).

    При оценке безотказности автоматических линий, а также технологических операций, за единицу наработки принимается количество изготовленных деталей после финишной операции.

    Операция контроля должна рассматриваться как неотъемлемая часть соответствующих технологических операций.

    Отказом технологической системы по показателям качества не следует считать произошедшее после операции обработки отклонение от требований технической документации по одному из показателей качества, выявленное при контрольной операции, в результате чего дефектная деталь или изолирована или направлена на доработку (переработку). При оценке безотказности по параметрам производительности время изготовления дефектной продукции должно учитываться как время, затраченное на устранение отказа.

    Для дорогостоящих и трудоемких в изготовлении изделий безотказность должна оцениваться для операции обработки и отдельно для контрольной операции.

    Оценка долговечности сводится к определению:

    Календарной продолжительности функционирования технологической системы до отказа, капитального ремонта, между ремонтами, до полной замены;

    Наработок системы до тех же периодов.

    Оценка ремонтопригодности технологической системы сводится:

    К определению показателей, характеризующих продолжительность и стоимость выявления и устранения отказов;

    К установлению времени, потребного для приведения системы в рабочее состояние;

    К устранению показателей, характеризующих трудоемкость и стоимость операций технического обслуживания технологических систем, подналадок, смены инструмента.

    Оценка надежности технологических систем проводится путем вычисления показателей надежности па этапах технологической подготовки производства, серийного изготовления, а также после капитального ремонта или модернизации важнейших элементов технологических систем.

    Основная цель оценок надежности технологических систем - приведение технологических процессов в такое состояние, при котором обеспечивается изготовление продукции в соответствии с установленными в технической документации параметрами и показателями качества при одновременном обеспечении максимальной производительности и минимуме потерь от брака. В зависимости от этапа проведения оценок могут решаться частные задачи:

    При планировании - установление объемов производства отдельных участков и цехов, определение экономически обоснованных норм точности;

    При технологической подготовке производства - выбор оптимальных технологических процессов (выбор режимов обработки, установление мест контрольных операций в технологическом процессе и планов контроля);

    При серийном производстве - определение соответствия параметров технологической системы установленным требованиям, выявление отрицательных факторов и разработка мероприятий по повышению надежности или точности и стабильности технологических процессов;

    После проведения ремонтов технологических систем - оценка качества ремонта.

    Эти же методы могут быть использованы для организации приемо-сдаточных испытаний после ремонта основных элементов технологических систем или после их модернизации.

    В основу современного развития работ по теории надежности могут быть положены следующие предпосылки:

    Большинство отказов, которые появляются при эксплуатации изделий, можно было предвидеть заранее, поэтому их нельзя считать случайными;

    Большинство внезапных отказов объясняются недоработкой и ошибками конструирования, изготовления и сборки, поэтому необходимо не просто констатировать факты появления внезапных отказов, а разрабатывать способы, исключающие их возможность;

    Большинство методов промышленного контроля в действительности не позволяет обнаружить дефекты; нужны новые методы контроля, дающие возможность прогнозировать моменты появления отказов с целью своевременного принятия необходимых мер, исключающих внезапный характер отказов;

    Надежность технических систем должна оцениваться еще на стадии проектирования;

    Управление надежностью должно носить комплексный характер и обеспечиваться на этапах проектирования, изготовления, эксплуатации и ремонта.

    Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. К таким характеристикам относят, например, временные понятия - наработку, наработку до отказа, наработку между отказами, ресурс, срок службы, время восстановления. Значения этих показателей получают по результатам испытаний или эксплуатации.

    По восстанавливаемости изделий показатели надежности подразделяют на пока- затели для восстанавливаемых изделий и показатели невосстанавливаемых изделий.

    Применяются также комплексные показатели. Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

    Показатели безотказности :

      вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает;

      средняя наработка до отказа - математическое ожидание наработки объекта до первого отказа;

      средняя наработка на отказ - отношение суммарной наработки восстанавли-ваемого объекта к математическому ожиданию числа его отказов в течение этой наработки;

      интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливаемым изделиям.

    Показатели долговечности.

    Количественные показатели долговечности восстанавливаемых изделий делятся на 2 группы.

    1. Показатели, связанные со сроком службы изделия:

      срок службы - календарная продолжительность эксплуатации от начала экс-плуатации объекта или ее возобновление после ремонта до перехода в предельное со-стояние;

      средний срок службы - математическое ожидание срока службы;

      срок службы до первого капитального ремонта агрегата или узла – это про-должительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;

      срок службы между капитальными ремонтами , зависящий преимущественно от качества ремонта, т.е. от того, в какой степени восстановлен их ресурс;

      суммарный срок службы – это календарная продолжительность работы техни-ческой системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;

      гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью γ, выраженной в процентах.

    Показатели долговечности, выраженные в календарном времени работы, позволяют непосредственно использовать их в планировании сроков организации ремонтов, поставки запасных частей, сроков замены оборудования. Недостаток этих показателей заключается в том, что они не позволяют учитывать интенсивность использования оборудования.

    2. Показатели, связанные с ресурсом изделия:

      ресурс - суммарная наработка объекта от начала его эксплуатации или ее во-зобновление после ремонта до перехода в предельное состояние.

      средний ресурс - математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;

      назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;

      гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью γ, выраженной в процентах.

    Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно. В качестве меры продолжи-тельности эксплуатации может быть выбран любой неубывающий параметр, характе-ризующий продолжительность эксплуатации объекта (для самолетов и авиационных двигателей естественной мерой ресурса служит налет в часах, для автомобилей – пробег в километрах, для прокатных станов – масса прокатанного металл в тоннах. Если наработку измерять числом производственных циклов, то ресурс будет принимать дискретные значения.

    Комплексные показатели надежности.

    Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

    Коэффициент технического использования - отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания:

    Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, ко-

    торый оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

    Коэффициент готовности - вероятность того, что объект окажется в работо-способном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Физический смысл коэффициента готовности - это вероятность того, что в прогнозируемый момент времени изделие будет исправно, т.е. оно не будет находиться во внеплановом ремонте.

    Коэффициент оперативной готовности - вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

    Классификация показателей . В зависимости от способа получения показатели подразделяют на расчетные, получаемые расчетными методами; экспериментальные, определяемые по данным испытаний; эксплуатационные, получаемые по данным экс-плуатации.

    В зависимости от области использования различают показатели надежности нормативные и оценочные.

    Нормативными называют показатели надежности, регламентированные в нор-мативно-технической или конструкторской документации.

    К оценочным относят фактические значения показателей надежности опытных образцов и серийной продукции, получаемые по результатам испытаний или эксплуатации.